izpis_h1_title_alt

Izdelava elektrokemijskih pretočnih reaktorskih sistemov s pomočjo tehnologije 3D tiskanja za izvajanje redoks reakcij kinonov
ID Rupnik, Alen (Author), ID Ručigaj, Aleš (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (2,35 MB)
MD5: 55D05443A1EAFF5632DF58A05B6387A6

Abstract
Tehnologija 3D tiskanja ali v industriji pogosteje poimenovana z izrazom aditivna proizvodnja se konstantno razvija že vse od sredine 90. let prejšnjega stoletja. Pojem aditivne proizvodnje zajema številne tehnike 3D tiskanja, kjer najpogostejšo metodo tiskanja predstavlja metoda ekstrudiranja polnila, ki je že dodobra razvita. Kljub dosegu tehnološke limite metode, se implementacija tehnologije na druga področja znanosti šele začenja. Eno aplikacijo izmed neskončne množice možnosti predstavlja združitev tehnologije tiskanja, reakcijskega inženirstva ter področja elektrokemije, kar je predstavljeno v nadaljnjem delu. Združitev teh področij je prikazana s pomočjo izdelave v celoti natisnjenega pretočnega reaktorskega sistema za izvajanje elektrokemijske pretvorbe 1,4-benzokinona v njegovo reducirano obliko, hidrokinon. Gre za reaktorski sistem narejen iz strukturnega polimera polietilen tereftalat glikola (PET-G) skupaj s prevodnim kompozitnim termoplastom polimlečne kisline in črnega ogljika (PLA-CB). Reakcijo sem testiral tako na šaržnem reaktorskem sistemu, ki potrjuje elektrokemijsko aktivnost kompozitnega materiala, kot tudi na končnem pretočnem reaktorskem sistemu, ki omogoča boljše razmerje volumna reakcijske mešanice na površino elektrode. Za namene kvalitativne potrditve sem izvedel analitične metode spektroskopije in ciklične voltametrije (CV). Prav tako sem opravil karakteristične metode analize s pomočjo vrstičnega elektronskega mikroskopa (SEM) za boljše razumevanje strukture elektrod ter prevodnosti samega kompozitnega materiala. Dodatno točko dela predstavlja simulacijska primerjava fluidne dinamike, natančneje hitrostnih profilov, med konvencionalnimi in 3D natisnjenimi reaktorskimi sistemi, kjer pri slednjih pride do pojava neravne oz. narebrene zgradbe pretočnega kanala.

Language:Slovenian
Keywords:Aditivna proizvodnja, elektrokemija, redoks pretvorba 1, 4-benzokinona, 3D natisnjen elektrokemijski reaktor
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FKKT - Faculty of Chemistry and Chemical Technology
Year:2020
PID:20.500.12556/RUL-119822 This link opens in a new window
COBISS.SI-ID:32579331 This link opens in a new window
Publication date in RUL:11.09.2020
Views:970
Downloads:113
Metadata:XML RDF-CHPDL DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Production of electrochemical flow reactor systems using 3D printing technology for redox reactions of quinones
Abstract:
3D printing technology or additive manufacturing as more commonly referred to in industry, has been constantly evolving since the mid-90s of the previous century. The term of additive manufacturing encompasses a number of 3D printing techniques, where the fused filament fabrication presents the most common and well-known printing methodology. Despite reaching the technological limit of the method, the implementation of technology in other fields of science is just beginning. One of the applications among the infinite number of possibilities is the combination of printing technology, reaction engineering and the field of electrochemistry, which is presented in the following part of the work. The combination of these fields is illustrated by the fabrication of a fully printed flow reactor system to perform the electrochemical conversion of 1,4-benzoquinone to its reduced form, hydroquinone. A reactor system made of the structural polymer polyethylene glycol terephthalate (PET-G) together with a conductive composite thermoplastic of polylactic acid and black carbon (PLA-CB) is used for the reaction. The reaction was first demonstrated on the batch reactor system, which confirmed the electrochemical activity of the composite material, and secondly on the final flow reactor system, which allows a better volume to surface ratio of the of the reaction mixture to the electrode surface. Analytical methods of spectroscopy and cyclic voltammetry were performed for the purposes of qualitative confirmation. Characteristic methods of analysis using a scanning electron microscope (SEM) were also performed for better understanding of the electrode’s structures and the conductivity of the composite material itself. An additional point of the work represents the computer aided comparison of fluid dynamics, and velocity profiles, between conventional and 3D printed reactor systems, where the latter have the uneven surface structure of the flow channel.

Keywords:Additive manufacturing, electrochemistry, redox reaction of 1, 4-benzoquinone, 3D printed reactor for electrochemical reactions

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back