Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Repository of the University of Ljubljana
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Details
Potencial imunoterapij pri zdravljenju raka pljuč
ID
Šelekar, Monika
(
Author
),
ID
Narat, Mojca
(
Mentor
)
More about this mentor...
PDF - Presentation file,
Download
(906,14 KB)
MD5: 6A330F2FCA218C89952E66A2ADE0F82D
Image galllery
Abstract
Rak pljuč je vodilni razlog smrti po svetu med rakavimi obolenji. Je pogosto pozno odkrita bolezen s slabo prognozo. Možnosti zdravljenja so odvisne od več dejavnikov, vključno z vrsto in stopnjo raka. Bolniki se lahko zdravijo s kemoterapijo, radioterapijo, kirurškimi posegi in ciljno terapijo; pogosto pa zdravljenje poteka s kombinacijo več različnih terapij. Tako kot pri drugih tipih rakavih obolenj pa tudi pri raku pljuč nove možnosti zdravljenja predstavlja imunoterapija. Potencial imunoterapije za zdravljenje se preiskuje v številnih kliničnih študijah, največji uspeh pa so pokazali inhibitorji imunskih kontrolnih točk. Med tem ko se imunoterapija, ki uporablja inhibitorje imunskih kontrolnih točk, že uporablja tudi v praksi, so druge terapije še v različnih stopnjah razvoja. Med temi so največji potencial pokazala antigen specifična cepiva, cepiva na osnovi tumorskih celic ter uporaba adaptivne celične terapije ter citokinov.
Language:
Slovenian
Keywords:
rak pljuč
,
imunoterapija
,
cepiva
,
inhibitorji imunskih kontrolnih točk
,
od antigena neodvisna imunoterapija
Work type:
Bachelor thesis/paper
Typology:
2.11 - Undergraduate Thesis
Organization:
BF - Biotechnical Faculty
Publisher:
[M. Šelekar]
Year:
2020
PID:
20.500.12556/RUL-119804
UDC:
602.68:606:616-006.6:615.371(043.2)
COBISS.SI-ID:
32257795
Publication date in RUL:
11.09.2020
Views:
1519
Downloads:
127
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
ŠELEKAR, Monika, 2020,
Potencial imunoterapij pri zdravljenju raka pljuč
[online]. Bachelor’s thesis. M. Šelekar. [Accessed 30 March 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=119804
Copy citation
Share:
Secondary language
Language:
English
Title:
The potential of immunotherapies in the treatment of lung cancer
Abstract:
Lung cancer is the leading cause of death among cancers worldwide. It is often a late-detected disease with a poor prognosis. Treatment options depend on several factors, including the type and stage of the cancer. Patients can be treated with chemotherapy, radiotherapy, surgery, and targeted therapy; often, however, treatment is done with a combination of several different therapies. As with other types of cancer, immunotherapy is a new treatment option for lung cancer. The potential of immunotherapy for treatment is being investigated in many clinical studies, and the greatest success has been shown by immune checkpoints inhibitors. While immunotherapy using immune checkpoint inhibitors is already being used in practice, other therapies are still in various stages of development. Among these, antigen-specific vaccines, tumor cell-based vaccines, and the use of adaptive cell therapy and cytokines have shown the greatest potential.
Keywords:
lung cancer
,
immunotherapy
,
vaccines
,
immune checkpoint inhibitors
,
antigen-independent immunotherapy
Similar documents
Similar works from RUL:
Object detection and classification in aquatic environment using convolutional neural networks
Computer-vision based polyp detection in underwater images
Training deep neural networks for stereo vision
Image Compression Using Convolutional Neural Networks
Using deep convolutional neural networks on natural language problems
Similar works from other Slovenian collections:
Person age estimation based on digital images using convolutional neural networks
Food recognition from digital images using convolutional neural networks
Recognition of human emotions on digital images using convolutional neural networks
Person activity recognition from image sequence using convolutional neural networks
Non-intrusive fall recognition using smart floor
Back