izpis_h1_title_alt

Smer sklopitve v nelinearnih sistemih : magistrsko delo
ID Brešar, Martin (Author), ID Horvat, Martin (Mentor) More about this mentor... This link opens in a new window, ID Boškoski, Pavle (Comentor)

.pdfPDF - Presentation file, Download (3,02 MB)
MD5: EC7B116842CD6FAF6180809D65B9F904

Abstract
Delo obravnava dve metodi za določitev smeri sklopitve sistemov na podlagi njihovih meritev. Prva temelji na informacijski teoriji, druga pa na časovno-frekvenčni transformaciji. Cilj naloge je preizkusiti njuno uporabnost za določitev smeri sklopitve sistemov v različnih dinamičnih režimih ter za reševanje inverznega problema iskanja modelskih parametrov sklopitve. Testiramo jih na modelu sklopljenih Duffingovih oscilatorjev v kaotičnem in regularnem dinamičnem režimu. Na sistemih v regularnem režimu se problem določitve smeri sklopitve izkaže za enostavnega, rešljiv pa je tudi v kaotičnem režimu. Inverzni problem je rešljiv, razen pri sklopitvi dveh kaotičnih sistemov. Predstavimo tudi statisični test z uporabo nadomestnih signalov za potrditev obstoja sklopitve. Na koncu obravnavamo tudi aplikacijo metod v medicini kot diagnostično orodje.

Language:Slovenian
Keywords:sklopitev dinamičnih sistemov, nelinearna dinamika, informacijska teorija, časovno-frekvenčna transformacija, nadomestni signali
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2020
PID:20.500.12556/RUL-119597 This link opens in a new window
COBISS.SI-ID:27600387 This link opens in a new window
Publication date in RUL:10.09.2020
Views:1187
Downloads:141
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Direction of coupling in nonlinear systems
Abstract:
The thesis discusses two methods for determining the direction of coupling of systems from their measurements. The first method is based on information theory and the second one on time-frequency transformation. The goal of the thesis is to test their usefulness for determining the direction of coupling of systems in different dynamic regimes and for solving the inverse problem of inferring the model parameters of coupling. We test them on the model of two coupled Duffing oscillators in a chaotic and a regular dynamic regime. For the systems in regular regime, the problem of determining the direction of coupling turns out to be simple, and it is also solvable in a chaotic regime. The inverse problem is solvable, except for the coupling of two chaotic systems. We also introduce a statistical test using surrogate data to confirm the existence of coupling. Finally, we discuss the application of the methods in medicine as a diagnostic tool.

Keywords:coupling in dynamical systems, nonlinear dynamics, information theory, time-frequency transformation, surrogate data

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back