izpis_h1_title_alt

Generiranje močnih praštevil
ID GORJAN, ANDREJ (Author), ID Jurišić, Aleksandar (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (486,26 KB)
MD5: 184700C0D6EA670131546C7A93232EDA

Abstract
Eden od temeljev kriptografije je teorija števil. Kot osnovni gradniki imajo v njej osrednji pomen praštevila in se posledično uporabljajo v mnogih šifrirnih algoritmih. To seveda pomeni, da morajo ti algoritmi imeti dostop do naključnih praštevil. Pri izbiri moramo biti pazljivi, saj nam kitajski izrek o ostankih pri določenih praštevilih omogoča učinkovit izračun tajnih ključev. Takšne napade lahko preprečimo z uporabo "močnih" praštevil. Ko jih vpeljemo, predstavimo dva algoritma za generiranje močnih praštevil in dokažemo njuno pravilnost ter izpeljemo njuno časovno zahtevnost. Algoritma potrebujeta naključna praštevila, zato nadaljujemo z analizo generatorja naključnih števil na osnovi LFSR. Kot gradnik ga lahko uporabimo v generatorju CCSR, na podoben način pa deluje tudi dober moderni generator Mersenne Twister. Zatem se na kratko posvetimo še testom praštevilskosti, kjer se osredotočimo na probabilistične teste. Na koncu sestavne dele združimo v algoritem, ki lahko generira naključna močna praštevila in predstavimo rezultate testiranja za kvaliteto naključnih števil ter hitrost delovanja generatorja.

Language:Slovenian
Keywords:kriptografija, kitajski izrek o ostankih, praštevila, generator naključnih števil, testi praštevilskosti
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2020
PID:20.500.12556/RUL-119415 This link opens in a new window
COBISS.SI-ID:29035011 This link opens in a new window
Publication date in RUL:08.09.2020
Views:2096
Downloads:167
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Generating strong primes
Abstract:
One of the foundations of cryptography is number theory. As building blocks, primes are central to the field and are used in many cryptographic algorithms. Of course, this means these algorithms require access to random prime numbers. When choosing them, we must be careful as certain primes allow for the Chinese remainder theorem to be used to efficiently compute our secret keys. These attacks can be prevented by using so called "strong" primes. We study them and present two algorithms for generating such numbers. We prove their correctness and determine their time complexity. Since these algorithms use random primes, we continue with an analysis of LFSR based random number generators. These can be used as building blocks in the CCSR generator and similar ideas are used by the Mersenne Twister generator. After this, we briefly discuss primality tests, focusing on probabilistic tests. These components are then combined into a efficient random strong prime number generator. Finally, the quality and speed of the generator are tested and the results are presented.

Keywords:cryptography, Chinese remainder theorem, prime numbers, random number generator, primality tests

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back