izpis_h1_title_alt

Priporočanje učnih nalog v izobraževalnih sistemih
ID Rajh, Mihael (Author), ID Demšar, Janez (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (667,68 KB)
MD5: 7633344FDBF43BC2229BA54AF7FCCEC7

Abstract
Priporočilni sistemi učnega gradiva so pogost pristop k personalizaciji učnega okolja. V tej diplomski nalogi se posebej osredotočamo na načine priporočanja učnih nalog na osnovi podatkov o uspešnosti učencev. V tem kontekstu so bili razviti številni pristopi, ki z modeliranjem sposobnosti profilirajo učence in naloge. Pri napovedovanju prihodnje uspešnosti učencev so se dodatno izkazale tudi faktorizacijske tehnike. Nekatere izmed teh modelov opišemo in posebej izpostavimo tenzorsko ter uteženo faktorizacijo za dinamično napovedovanje uspešnosti. Nato nekatere faktorizacijske pristope ovrednotimo na podatkih zbranih iz spletnega učnega sistema. Na koncu opredelimo še kriterije uspešnega priporočanja v izobraževalnih sistemih in ocenimo primernost faktorizacije za ta namen. Nenegativna matrična in tenzorska faktorizacija nista dosegli bistveno boljšega napovedovanja kakor napovedovanje s povprečjem nalog. Časovno utežena matrična faktorizacija pa se je izkazala kot možna alternativa tenzorski faktorizaciji. Za namen priporočanja se faktorizacija zdi primerna le v določenih situacijah in s primerno obravnavo njenih pomanjkljivosti. Iz tega sklepamo, da mora odločitev o metodi in strategiji priporočanja upoštevati cilj in splošni kontekst učnega okolja.

Language:Slovenian
Keywords:priporočilni sistem, napovedovanje uspeha, tenzorska faktorizacija, modeliranje sposobnosti
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2020
PID:20.500.12556/RUL-119400 This link opens in a new window
COBISS.SI-ID:28983811 This link opens in a new window
Publication date in RUL:08.09.2020
Views:889
Downloads:127
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Recommending learning exercises in educational systems
Abstract:
Recommendation systems for learning materials are a common approach to personalizing learning environments. In this Bachelor's Thesis we focus on recommending learning exercises using student's performance data. Many approaches using skill modeling to profile students and exercises have been developed in this context. Additionally, factorization techniques have been shown to perform well in predicting students' future performance. We describe some of these models and focus specifically on tensor and weighted factorization for dynamic performance prediction. We then evaluate some factorization approaches on data gathered from an online learning platform. Finally, we specify criteria for successful recommending in educational systems and assess the appropriateness of factorization for this purpose. Nonnegative matrix and tensor factorization did not significantly improve on predicting with item averages. However, temporally weighted matrix factorization was found to be a viable alternative to tensor factorization. For recommending purposes, factorization seems appropriate only under some circumstances and with enough consideration for its weaknesses. From this we conclude that the choice of a recommendation model and strategy must take into account the goal and context of the learning environment.

Keywords:recommender system, performance prediction, tensor factorization, skill modeling

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back