Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Posnemanje dinamskega modela mobilnega robota z uporabo LSTM nevronske mreže
ID
Urh, Nino
(
Author
),
ID
Vrabič, Rok
(
Mentor
)
More about this mentor...
PDF - Presentation file,
Download
(3,89 MB)
MD5: E8BCB2E8EFD0324CCD1DB44868793806
Image galllery
Abstract
V magistrski nalogi je obravnavano posnemanje dinamskega modela mobilnega robota z diferencialnim pogonom z uporabo nevronske mreže z dolgim kratkoročnim spominom (LSTM). LSTM mreže imajo zmožnost analizirati pretekle dogodke, na katerih ustrezno napovedo kratkoročno prihodnost. Preverili bomo, ali mreža lahko naredi povezavo med vhodnimi in izhodnimi veličinami dinamskega modela. Najprej je predstavljena teorija o strojnem učenju in umetnih nevronskih mrežah ter delovanju fizikalnega modela robota. V praktičnem delu je opisana metoda generiranja podatkov in preizkusi različnih struktur LSTM mreže. Rezultati prikažejo, da umetna LSTM mreža dobro posnema dinamiko robota.
Language:
Slovenian
Keywords:
nevronske mreže
,
LSTM
,
dinamski model
,
robotika
,
diferencialni pogon
,
simulacija
Work type:
Master's thesis/paper
Typology:
2.09 - Master's Thesis
Organization:
FS - Faculty of Mechanical Engineering
Place of publishing:
Ljubljana
Publisher:
[N. Urh]
Year:
2020
Number of pages:
XXII, 75 str.
PID:
20.500.12556/RUL-119357
UDC:
004.85:007.52(043.2)
COBISS.SI-ID:
28719619
Publication date in RUL:
08.09.2020
Views:
1171
Downloads:
125
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Copy citation
Share:
Secondary language
Language:
English
Title:
Simulating a dynamic model with differential drive using LSTM neural network
Abstract:
The masters thesis deals with imitation of a dynamic model of a differential-powered robot with an LSTM artificial neural network. Long-short term memory network (LSTM) have the ability to predict short term future events based on the past time-varied data. We will test the LSTM network's ability to make a corealtion between input and output variables of dynamic model. The theory of machine learning and artificial neural networks and the operation of a physical model of a robot are presented. The practical part describes the method of generating data and testing different structures of the LSTM network. The results show that it is possible to use the LSTM for replacement of the physical model without proper knowledge of the physical background.
Keywords:
neural networks
,
LSTM
,
dynamic model
,
robotics
,
differential drive
,
simulation
Similar documents
Similar works from RUL:
Similar works from other Slovenian collections:
Back