izpis_h1_title_alt

Clustering time series of smart meter measurements
ID Teršek, Matija (Author), ID Štrumbelj, Erik (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (965,33 KB)
MD5: CD4166C2113859DD039860C33465FB96

Abstract
In this thesis we provide a compact review of 8 time series representations in combination with 2 clustering algorithms and 2 indices for internal clustering validation. We analyse time series measured by smart meter devices and check how their representations affect clustering. We conclude that no representation can be directly used for the task and that more focus should be put on preprocessing. Additionally, we compare representations and 4 similarity measures on simulated time series. We find out that similarity measures outperform representations in most cases and that a variational autoencoder-based representation works the best for simulated time series.

Language:English
Keywords:time series, representations, clustering, recurrent neural networks, variational autoencoders, similarity measures
Work type:Bachelor thesis/paper
Organization:FRI - Faculty of Computer and Information Science
Year:2020
PID:20.500.12556/RUL-119309 This link opens in a new window
COBISS.SI-ID:28477443 This link opens in a new window
Publication date in RUL:07.09.2020
Views:1232
Downloads:166
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:Slovenian
Title:Gručenje časovnih vrst meritev pametnih merilnih naprav
Abstract:
V diplomskem delu povzamemo 8 predstavitev časovnih vrst v kombinaciji z 2 algoritmoma za gručenje in 2 indeksoma za interno validacijo gručenja. Eksperimentalno preverimo vpliv predstavitev časovnih vrst na gručenje podatkov, ki so jih izmerile pametne merilne naprave. Ugotovimo, da nobena izmed predstavitev ni takoj in neposredno uporabna, in da se je bolj pomembno osredotočiti na predprocesiranje. Uporabnost predstavitev časovnih vrst v gručenju preverimo tudi na umetnih podatkih. Rezultate primerjamo z gručenjem celih časovnih vrst, kjer uporabimo 4 različne mere podobnosti. Ugotovimo, da so mere podobnosti v večini primerov boljše, najbolje pa se obnese predstavitev, ki temelji na variacijskem avtokodirniku.

Keywords:časovne vrste, predstavitve, gručenje, rekurzivne nevronske mreže, variacijski avtokodirnik, mere podobnosti

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back