Details

Superposition and compression of deep neutral networks
ID Zeman, Marko (Author), ID Bosnić, Zoran (Mentor) More about this mentor... This link opens in a new window, ID Osipov, Evgeny (Comentor)

.pdfPDF - Presentation file, Download (2,79 MB)
MD5: E7D7EA81E82DDA92ECC3EDCC815F8E89

Abstract
In this work we investigate a combination of the two recently proposed techniques: superposition of multiple neural networks into one and neural network compression. We show that these two techniques can be successfully combined to deliver a great potential for trimming down deep (convolutional) neural networks. We study the trade-offs between the model compression rate and the accuracy of the superimposed tasks and present a new approach, where the fully connected layers are isolated from the convolutional layers and serve as a general purpose processing unit for several CNN models. We evaluate our techniques on adapted MNIST and CIFAR-100 dataset, calculating classification accuracy and comparing baseline to the superposition method. Our experiments confirm the usability of superposition in terms of avoiding the catastrophic forgetting effect. The work has a significant importance in the context of implementing deep learning on low-end computing devices as it enables neural networks to fit edge devices with constrained computational resources (e.g. sensors, mobile devices, controllers).

Language:English
Keywords:Artificial Intelligence, Machine Learning, Deep Learning, Convolutional Neural Networks, Model Compression, Superposition of Models
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2020
PID:20.500.12556/RUL-119135 This link opens in a new window
COBISS.SI-ID:27690499 This link opens in a new window
Publication date in RUL:03.09.2020
Views:2425
Downloads:255
Metadata:XML DC-XML DC-RDF
:
ZEMAN, Marko, 2020, Superposition and compression of deep neutral networks [online]. Master’s thesis. [Accessed 29 March 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=119135
Copy citation
Share:Bookmark and Share

Secondary language

Language:Slovenian
Title:Superpozicija in kompresija globokih nevronskih mrež
Abstract:
V našem delu preučujemo kombinacijo dveh nedavno predlaganih tehnik, in sicer superpozicijo več nevronskih mrež v eni in kompresijo nevronskih mrež. Pokazali smo, da je mogoče ti dve tehniki uspešno kombinirati, kar kaže na velik potencial zmanjševanja velikosti globokih (konvolucijskih) nevronskih mrež. Preučujemo kompromis med stopnjo kompresije modela in natančnostjo naučenih nalog ter predstavljamo nov pristop, pri katerem so polno povezani nivoji mreže izolirani od konvolucijskih nivojev in služijo kot splošno namenska procesna enota za več modelov konvolucijskih nevronskih mrež. Uspešnost naših tehnik ocenjujemo na prilagojenih MNIST in CIFAR-100 podatkih, izračunamo točnost klasifikacije in primerjamo izhodiščno metodo z metodo superpozicije. Naši poskusi potrjujejo uporabnost superpozicije v smislu izogibanja učinku katastrofalnega pozabljanja pri učenju več zaporednih nalog. Namen dela je pomemben v smislu izvajanja globokega učenja na napravah z omejenimi računskimi viri (npr. senzorji, mobilne naprave, krmilniki).

Keywords:umetna inteligenca, strojno učenje, globoko učenje, konvolucijske nevronske mreže, kompresija modelov, supepozicija modelov

Similar documents

Similar works from RUL:
  1. ǂThe ǂimportance of cancer stem cells and epithelial-mesenchymal transition in the progression of non-small cell lung cancer
  2. Gene expression levels of the prolyl hydroxylase domain proteins PHD1 and PHD2 but not PHD3 are decreased in primary tumours and correlate with poor prognosis of patients with surgically resected non-small-cell lung cancer
  3. Study of phosphatidylethanolamine N-methyltransferase gene expression in non-small cell lung cancer tissue
  4. Usefulness of immunohistochemically determined epidermal growth factor receptor mutations in lung cancer
  5. Diabetes mellitus and physical activity
Similar works from other Slovenian collections:
  1. Expression patterns and prognostic relevance of subtype-specific transcription factors in surgically resected small cell lung cancer
  2. Outsourcing predictive biomarker testing in non-small cell carcinoma
  3. Sequential afatinib and osimertinib in patients with EGFR mutation-positive non-small-cell lung cancer
  4. Sequential afatinib and osimertinib in patients with EGFR mutation-positive non-small-cell lung cancer
  5. NSCLC molecular testing in Central and Eastern European countries

Back