izpis_h1_title_alt

Naključni slonji sprehodi : delo diplomskega seminarja
ID Kovač, Enej (Author), ID Bernik, Janez (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (654,95 KB)
MD5: 6F2D67571866F8E6813C7EB5785512D7
.zipZIP - Appendix, Download (4,84 KB)
MD5: 19458DF05626EB08CD021F56560C59A6

Abstract
Obravnavamo naključni slonji sprehod, kjer so prirastki odvisni od celotne zgodovine procesa. Izračunamo funkciji pričakovane vrednosti in variance procesa ter ugotovimo, da naključni sprehod pri določeni vrednosti parametrov modela preide iz difuznega v superdifuzni režim. Obravnavamo konvergenco procesa in pokažemo, da zanj velja krepki zakon velikih števil. Ugotovimo, da v difuznem režimu in tudi na točki prehoda ustrezno normaliziran proces konvergira k normalni slučajni spremenljivki, v superdifuznem režimu pa k nedegenerirani slučajni spremenljivki, ki pa ni normalna.

Language:Slovenian
Keywords:slučajni procesi, naključni slonji sprehodi, stohastična konvergenca, difuzni režim, superdifuzni režim, mejna superdifuznost
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2020
PID:20.500.12556/RUL-119096 This link opens in a new window
UDC:519.2
COBISS.SI-ID:33313027 This link opens in a new window
Publication date in RUL:03.09.2020
Views:1985
Downloads:403
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Elephant random walks
Abstract:
We consider the random elephant walk, where the increments depend on the whole history of the process. We calculate functions of expected value and variance of the process and see, that depending on the values of parameters, the process exhibits diffusive and superdiffusive behaviour. We discuss the convergence of the process and show, that the strong law of large numbers holds. In diffusive regime and also at the transition point, the process, when suitably normalized, converges to a normal random variable. However, this is not the case in superdiffusive regime, where we have convergence to a non-degenerate, yet not normal random variable.

Keywords:stochastic processes, elephant random walks, stochastic convergence, diffusive regime, superdiffusive regime, marginal superdiffusion

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back