izpis_h1_title_alt

Slučajne matrične igre : delo diplomskega seminarja
ID Bertok, Tina (Author), ID Bernik, Janez (Mentor) More about this mentor... This link opens in a new window, ID Šega, Gregor (Comentor)

.pdfPDF - Presentation file, Download (8,54 MB)
MD5: 1C39DF93DA2EE76922E8C6BCF024E652

Abstract
Slučajne matrične igre so običajne matrične igre, katerih plačila so slučajne spremenljivke. Celotna diplomska naloga temelji na primerjavi vrednosti povprečne igre ter povprečne vrednosti igre. Matrično igro predstavlja slučajna matrika. V ospredju je preizkus hipoteze, da velja različica Jensenove neenakosti in sicer da je povprečna vrednost igre vedno večja ali enaka vrednosti povprečne igre. Hipotezo smo preverili najprej na 2x2 matrikah, kasneje tudi na 3x3 matrikah.

Language:Slovenian
Keywords:slučajne matrične igre, vrednost igre, sedlo, Nashevo ravnovesje, teorija iger
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2020
PID:20.500.12556/RUL-118035 This link opens in a new window
UDC:519.8
COBISS.SI-ID:33321219 This link opens in a new window
Publication date in RUL:15.08.2020
Views:1956
Downloads:191
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Random matrix games
Abstract:
Random matrix games are ordinary matrix games whose payouts are random variables. The thesis is based on a comparison of the value of the average game and the average value of the game. A matrix game is a random matrix. At the forefront is a test of the hypothesis that a version of Jensen's inequality holds, namely that the average value of the game is always greater than or equal to the value of the average game. We tested the hypothesis first on 2x2 matrices, later also on 3x3 matrices.

Keywords:random matrix games, game value, saddle point, Nash equilibrium, game theory

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back