Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Kardar-Parisi-Zhang physics in integrable rotationally symmetric dynamics on discrete space-time lattice
ID
Krajnik, Žiga
(
Author
),
ID
Prosen, Tomaž
(
Author
)
PDF - Presentation file,
Download
(2,05 MB)
MD5: 839C3377544DC68B596B41E25B336351
URL - Source URL, Visit
https://link.springer.com/article/10.1007/s10955-020-02523-1
Image galllery
Abstract
We introduce a deterministic SO(3) invariant dynamics of classical spins on a discrete space–time lattice and prove its complete integrability by explicitly finding a related non-constant (baxterized) solution of the set-theoretic Yang–Baxter equation over the 2-sphere. Equipping the algebraic structure with the corresponding Lax operator we derive an infinite sequence of conserved quantities with local densities. The dynamics depend on a single continuous spectral parameter and reduce to a (lattice) Landau–Lifshitz model in the limit of a small parameter which corresponds to the continuous time limit. Using quasi-exact numerical simulations of deterministic dynamics and Monte Carlo sampling of initial conditions corresponding to a maximum entropy equilibrium state we determine spin-spin spatio-temporal (dynamical) correlation functions with relative accuracy of three orders of magnitude. We demonstrate that in the equilibrium state with a vanishing total magnetization the correlation function precisely follows Kardar–Parisi–Zhang scaling hence the spin transport belongs to the universality class with dynamical exponent z=3/2, in accordance to recent related simulations in discrete and continuous time quantum Heisenberg spin 1/2 chains.
Language:
English
Keywords:
statistical physics
,
integrable systems
,
spin chains
,
spin transport
Typology:
1.01 - Original Scientific Article
Organization:
FMF - Faculty of Mathematics and Physics
Publication status:
Published
Publication version:
Author Accepted Manuscript
Year:
2020
Number of pages:
Str. 110-130
Numbering:
Vol. 179, iss. 1
PID:
20.500.12556/RUL-117822
UDC:
536.9
ISSN on article:
0022-4715
DOI:
10.1007/s10955-020-02523-1
COBISS.SI-ID:
23775747
Publication date in RUL:
29.07.2020
Views:
1068
Downloads:
415
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Copy citation
Share:
Record is a part of a journal
Title:
Journal of statistical physics
Shortened title:
J. stat. phys.
Publisher:
Plenum Press.
ISSN:
0022-4715
COBISS.SI-ID:
25793280
Secondary language
Language:
Slovenian
Keywords:
statistična fizika
,
integrabilni sistemi
,
spinske verige
,
spinski transport
Projects
Funder:
EC - European Commission
Funding programme:
H2020
Project number:
694544
Name:
Open Many-body Non-Equilibrium Systems
Acronym:
OMNES
Funder:
ARRS - Slovenian Research Agency
Project number:
P1-0402
Name:
Matematična fizika
Similar documents
Similar works from RUL:
Similar works from other Slovenian collections:
Back