Details

Nevronske mreže z vzvratnim razširjanjem napak v funkcijskem programskem jeziku : delo diplomskega seminarja
ID Guzelj Blatnik, Laura (Author), ID Todorovski, Ljupčo (Mentor) More about this mentor... This link opens in a new window, ID Osojnik, Aljaž (Comentor)

.pdfPDF - Presentation file, Download (1,00 MB)
MD5: EBF4BBA72361E437C3F954BF71F13622

Abstract
Diplomsko delo se poglobi v usmerjene nevronske mreže. Le te temeljijo na posnemanju možganskih funkcij, uporabljajo pa se za napovedovanje in klasifikacijo. Sestavljajo jih nevroni organizirani v sloje. Nevroni so med sabo povezani s sinapsami. Usmerjene nevronske mreže iz stanja nevronov v vhodnem sloju preko uteži na sinapsah in nevronih v vmesnih slojih, izračunajo napoved v izhodnem sloju. S pomočjo algoritma za vzvratno razširjanje napake in učnih primerov mrežo naučimo odzivanja na neznane situacije. Algoritem temelji na spreminjanju uteži na sinapsah, učenje pa poteka dokler ni razlika med želeno in izračunano vrednostjo dovolj majhna. Poleg nevronskih mrež se delo osredotoči tudi na funkcijsko programiranje s poudarkom na programskem jeziku OCaml. Primer nevronske mreže z vzvratnim razširjanjem napak je tudi implementiran v programskem jeziku OCaml. Delovanje mreže je prikazano na konkretnem primeru, kjer je ovrednotena napaka mreže na izbrani podatkovni množici.

Language:Slovenian
Keywords:usmerjene nevronske mreže, vzvratno razširjanje napake, perceptron, umetna inteligenca, strojno učenje, funkcijski programski jezik OCaml
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2020
PID:20.500.12556/RUL-117661 This link opens in a new window
UDC:004.8
COBISS.SI-ID:58750723 This link opens in a new window
Publication date in RUL:19.07.2020
Views:2804
Downloads:306
Metadata:XML DC-XML DC-RDF
:
GUZELJ BLATNIK, Laura, 2020, Nevronske mreže z vzvratnim razširjanjem napak v funkcijskem programskem jeziku : delo diplomskega seminarja [online]. Bachelor’s thesis. [Accessed 31 May 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=117661
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Feed-forward neural networks with backpropragtion in a functional programming language
Abstract:
This paper focuses on feed-forward neural networks. Mimicking brain functions, neural networks are used for prediction and classification. Neural networks are composed of neurons organized in layers and connected by synapses. From the input values through weights on the synapses and neurons in hidden layers, neural networks compute the prediction in the output layer. Utilizing the backpropagation algorithm and learning examples the network is able to learn how to respond to unknown situations. The idea behind backpropagation is to change weights on the synapses until the difference between computed and desired values is small enough. In addition, the work presents functional programming and the OCaml functional programming language. An implementation of a neural network with backpropagation in the OCaml programming language is presented at the end of the work. The work concludes with an application of the neural network to a real-world example, where the error of the network is evaluated on a specific data set.

Keywords:feed-forward neural network, backpropagation, perceptron, artificial intelligence, machine learning, functional programming language OCaml

Similar documents

Similar works from RUL:
  1. Time series forecasting - evaluation of different methods
  2. Finding talented players for a soccer club by using machine learning
  3. Recommender system for Slovene electronic books
  4. Ugotavljanje efekta različnih majic na posnetke koron prstov s Kirlianovo kamero
  5. Impact of the development of artificial intelligence on the settled concepts of constitutional law
Similar works from other Slovenian collections:
  1. Automatic summarization of slovenian texts with machine learning
  2. Vpliv umetne inteligence na prihodnost modne fotografije
  3. Data canyons, a machine learning approach for interpretable artificial intelligence
  4. Building classifiers using rough sets method
  5. INDUCTIVE LEARNING FROM OBSERVATION

Back