Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Simedianska točka trikotnika in tetraedra
ID
Jeglič, Anja
(
Author
),
ID
Cencelj, Matija
(
Mentor
)
More about this mentor...
,
ID
Gabrovšek, Boštjan
(
Comentor
)
URL - Presentation file, Visit
http://pefprints.pef.uni-lj.si/6303/
Image galllery
Abstract
Predstavili smo simediansko točko trikotnika, ki je ena od več tisoč znamenitih točk povezanih s trikotnikom. Na začetku smo definirali izogonalno konjugiranko premice skozi oglišče trikotnika, s pomočjo katere smo nato definirali simediansko točko trikotnika. Pogledali smo si nekaj zanimivih lastnosti simedianske točke trikotnika in v kakšnem odnosu je simedianska točka trikotnika z nekaterimi drugimi značilnimi točkami trikotnika. V nadaljevanju smo predstavili tetraeder in definirali izogonalno konjugiranko ravnine skozi rob tetraedra. S pomočjo tega smo lahko definirali simedianske ravnine katerega koli tetraedra. Na koncu smo predstavili dokaz, da se vseh šest simedianskih ravnin tetraedra seka v skupni točki in da se ta točka imenuje simedianska točka tetraedra.
Language:
Slovenian
Keywords:
trikotnik
Work type:
Master's thesis/paper
Typology:
2.09 - Master's Thesis
Organization:
PEF - Faculty of Education
Year:
2020
PID:
20.500.12556/RUL-117525
COBISS.SI-ID:
22456323
Publication date in RUL:
15.07.2020
Views:
1086
Downloads:
174
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Copy citation
Share:
Secondary language
Language:
English
Title:
Symmedian point of a triangle and a tetrahedron
Abstract:
We present the symmedian point of a triangle which is one of several thousand particular points associated to a triangle. First the isogonal conjugate of a line through a vertex of the triangle is defined in order to define the symmedian point. We take a closer look at some of the interesting properties of the symmedian point of a triangle and the relationship of the symmedian point with some other particular points of the triangle. Next we consider a tetrahedron and define the isogonal conjugate of a plane through a side of the tetrahedron. This enables us to define the symmedian planes of any tetrahedron. A proof that all six symmedian planes of a tetrahedron intersect in a common point is presented and this point is called the symmedian point of the tetrahedron.
Keywords:
triangle
Similar documents
Similar works from RUL:
Similar works from other Slovenian collections:
Back