izpis_h1_title_alt

Simedianska točka trikotnika in tetraedra
ID Jeglič, Anja (Author), ID Cencelj, Matija (Mentor) More about this mentor... This link opens in a new window, ID Gabrovšek, Boštjan (Comentor)

URLURL - Presentation file, Visit http://pefprints.pef.uni-lj.si/6303/ This link opens in a new window

Abstract
Predstavili smo simediansko točko trikotnika, ki je ena od več tisoč znamenitih točk povezanih s trikotnikom. Na začetku smo definirali izogonalno konjugiranko premice skozi oglišče trikotnika, s pomočjo katere smo nato definirali simediansko točko trikotnika. Pogledali smo si nekaj zanimivih lastnosti simedianske točke trikotnika in v kakšnem odnosu je simedianska točka trikotnika z nekaterimi drugimi značilnimi točkami trikotnika. V nadaljevanju smo predstavili tetraeder in definirali izogonalno konjugiranko ravnine skozi rob tetraedra. S pomočjo tega smo lahko definirali simedianske ravnine katerega koli tetraedra. Na koncu smo predstavili dokaz, da se vseh šest simedianskih ravnin tetraedra seka v skupni točki in da se ta točka imenuje simedianska točka tetraedra.

Language:Slovenian
Keywords:trikotnik
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:PEF - Faculty of Education
Year:2020
PID:20.500.12556/RUL-117525 This link opens in a new window
COBISS.SI-ID:22456323 This link opens in a new window
Publication date in RUL:15.07.2020
Views:1086
Downloads:174
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Symmedian point of a triangle and a tetrahedron
Abstract:
We present the symmedian point of a triangle which is one of several thousand particular points associated to a triangle. First the isogonal conjugate of a line through a vertex of the triangle is defined in order to define the symmedian point. We take a closer look at some of the interesting properties of the symmedian point of a triangle and the relationship of the symmedian point with some other particular points of the triangle. Next we consider a tetrahedron and define the isogonal conjugate of a plane through a side of the tetrahedron. This enables us to define the symmedian planes of any tetrahedron. A proof that all six symmedian planes of a tetrahedron intersect in a common point is presented and this point is called the symmedian point of the tetrahedron.

Keywords:triangle

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back