Natural proteins are biopolymers of different lengths which are constructed form 20 amino acids. There are many possible amino acid sequence combinations which determine proteins' shapes and functions, yet only a limited amount of those can be found in nature. Constructing new and unseen proteins with different functions is the main goal of de novo protein design. One of many approaches to de novo protein design is coiled coil protein origami (CCPO). Protein origami can be used as a frame for attachment of different protein domains which can lead to obtaining more complex protein structures. For this purpose we used the SpyCatcher/SpyTag system that is known for its spontaneous isopeptide bond formation ability. The main goal of this thesis is the synthesis of a tetrahedral protein which has attached one SpyCatcher domain, named Tet12SN-ScGG. The protein was isolated with NiNTA affinity chromatography and size exclusion chromatography followed by NaDS-PAGE analysis. Isolated protein was then combined with proteins SpyTag RFP and Tet12SN-StStStR, which have one and three SpyTag domains attached, respectively. With Native-PAGE and SEC-MALS analysis we successfully confirmed activity of Tet12SN-ScGG, which formed monoconjugates/dimers with SpyTag- RFP. Reactions between Tet12SN-ScGG and Tet12SN-StStStR led to the formation of mono- di- and tri-conjugates. We confirmed our hypothesis that formation of dimeric protein nanocages with the use of the SpyCatcher/SpyTag system is possible – furthermore, we successfully constructed a structure, composed of four tetrahedral subunits.
|