Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Štetje objektov na slikah z uporabo genetskega algoritma
ID
BABNIK, GREGOR
(
Author
),
ID
Šajn, Luka
(
Mentor
)
More about this mentor...
PDF - Presentation file,
Download
(11,07 MB)
MD5: 76BE5D94E4FBD916586635F7CB333C08
Image galllery
Abstract
Delo obravnava način samodejnega štetja objektov na slikah. Uporabljena metoda za učenje je genetski algoritem, s katerim se išče zaporedje ustreznih operacij, ki se jih nato izvede nad podanimi slikami. Uspešnost posamezne rešitve se meri z odstopanjem med številoma preštetih in dejanskih objektov. Za nastavitev ločljivosti vhodnih slik se uporablja algoritem ARes. Implementacija procesiranja slik se izvaja z uporabo programskih knjižnic Tensorflow in OpenCV. Delo je testirano na množicah slik iz različnih domen.
Language:
Slovenian
Keywords:
štetje
,
genetski algoritem
,
tensorflow
,
opencv
,
ares
Work type:
Bachelor thesis/paper
Typology:
2.11 - Undergraduate Thesis
Organization:
FRI - Faculty of Computer and Information Science
Year:
2020
PID:
20.500.12556/RUL-117266
COBISS.SI-ID:
21798403
Publication date in RUL:
03.07.2020
Views:
1372
Downloads:
212
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Copy citation
Share:
Secondary language
Language:
English
Title:
Counting objects in images using a genetic algorithm
Abstract:
The work deals with the automatic counting of objects in images. A genetic algorithm is used as a learning method to find appropriate operations used to process the images. The success of an individual solution is measured as a difference between the number of counted objects and the real object count. ARes algorithm is used to adjust the resolution of input images. The image processing part is implemented using two libraries TensorFlow and OpenCV. The work is tested against various sets of images in different domains.
Keywords:
counting
,
genetic algorithm
,
tensorflow
,
opencv
,
ares
Similar documents
Similar works from RUL:
Similar works from other Slovenian collections:
Back