Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Repository of the University of Ljubljana
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Details
Metuljev učinek : delo diplomskega seminarja
ID
Meglić, Tadej
(
Author
),
ID
Prezelj, Jasna
(
Mentor
)
More about this mentor...
PDF - Presentation file,
Download
(1,61 MB)
MD5: 5F7049B33B596F5DAF29B82EC5376F98
Image galllery
Abstract
Majhna sprememba v začetnem stanju sistema privede do dolgoročno velikih sprememb. Ta lastnost oteži analizo raznih dinamičnih sistemov, kar nam predstavlja velik problem, saj je resnično življenje večinoma sestavljeno iz takšnih situacij. Kljub temu bomo z raznimi orodji poiskali zanimive rezultate o nepredvidljivem Lorenzovem sistemu. Videli bomo, kdaj se začne obnašati kaotično. S pomočjo Hartman- Grobmanovega izreka ga bomo linearizirali ter s tem poenostavili lokalno analizo kvalitativnih lastnosti. Uporabili bomo funkcijo Ljapunova, s katero bomo globalno preučili, kam gredo rešitve pri določenih parametrih.
Language:
Slovenian
Keywords:
kaos
,
dinamični sistem
,
diferencialne enačbe
,
bifurkacija
Work type:
Final seminar paper
Typology:
2.11 - Undergraduate Thesis
Organization:
FMF - Faculty of Mathematics and Physics
Year:
2020
PID:
20.500.12556/RUL-117237
UDC:
517.9
COBISS.SI-ID:
58558979
Publication date in RUL:
03.07.2020
Views:
3388
Downloads:
245
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
MEGLIĆ, Tadej, 2020,
Metuljev učinek : delo diplomskega seminarja
[online]. Bachelor’s thesis. [Accessed 26 April 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=117237
Copy citation
Share:
Secondary language
Language:
English
Title:
Butterfly effect
Abstract:
Small changes in the initial state of the system can cause massive changes in the long run. This causes the analysis of said dynamical system significantly more difficult, which poses a problem, as situations of this sort arise in many fields of science. Nevertheless, we will find interesting results about the unexpected behaviour of Lorenz system. We will see at which parameters it behaves chaotically. Using the Hartman-Grobman theorem, we will linearize the system, making it easier to analyze locally. We will be using a Liapunov function to globally analyse the behaviour of solutions at certain parameters.
Keywords:
chaos
,
dynamical system
,
differential equations
,
bifurcation
Similar documents
Similar works from RUL:
Searching for similar works...
Similar works from other Slovenian collections:
Back