izpis_h1_title_alt

Optimal parametric interpolants of circular arcs
Vavpetič, Aleš (Author)

.pdfPDF - Presentation file, Download (430,07 KB)

Abstract
The aim of this paper is a construction of quartic parametric polynomial interpolants of a circular arc, where two boundary points of a circular arc are interpolated. For every unit circular arc of an inner angle not greater than $2\pi$ we find the best interpolant, where the optimality is measured by the simplified radial error.

Language:English
Keywords:geometric interpolation, circular arc, parametric polynomial, Bézier curve, optimal interpolation
Tipology:1.01 - Original Scientific Article
Organization:FMF - Faculty of Mathematics and Physics
Year:2020
Number of pages:art. 101891 (9 str.)
Numbering:Vol. 80
UDC:519.651
ISSN on article:0167-8396
DOI:10.1016/j.cagd.2020.101891 Link is opened in a new window
COBISS.SI-ID:19671555 Link is opened in a new window
Views:259
Downloads:131
Metadata:XML RDF-CHPDL DC-XML DC-RDF
 
Average score:(0 votes)
Your score:Voting is allowed only to logged in users.
:
Share:AddThis
AddThis uses cookies that require your consent. Edit consent...

Record is a part of a journal

Title:Computer Aided Geometric Design
Shortened title:Comput. aided geom. des.
Publisher:North-Holland
ISSN:0167-8396
COBISS.SI-ID:25266176 This link opens in a new window

Secondary language

Language:Slovenian
Title:Optimalni parametrični interpolanti krožnih lokov
Abstract:
V članku obravnavamo konstrukcijo kvartičnih parametričnih polinomov, ki interpolirajo krožni lok tako, da se v krajiščih krivulji ujemata. Za enotski krožni lok z notranjim kotom ne večjim od $2\pi$, konstruiramo najboljši interpolant, kjer optimalnost merimo glede na poenostavljeno radialno napako.

Keywords:geometrična interpolacija, krožni lok, parametrični polinom, Bézierova krivulja, optimalna interpolacija

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Comments

Leave comment

You have to log in to leave a comment.

Comments (0)
0 - 0 / 0
 
There are no comments!

Back