izpis_h1_title_alt

Primerjalna analiza postopkov projekcije 3D medicinskih slik
ID OSREDKAR, JAN (Author), ID Špiclin, Žiga (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (5,46 MB)
MD5: 376A34AE91DD9F183D2DE6550679506A

Abstract
Invazivnost kirurških posegov lahko zmanjšamo na podlagi načrtovanja na predoperativnih 3D medicinskih slikah in z realnočasovnim povratno-zančnim slikovnim vodenjem na osnovih žive 2D slike. Če želimo predoperativne načrte prenesti v prostor bolnika na operacijski mizi, potem je potrebno predoperativno 3D sliko prostorsko poravnati na medoperativno 2D sliko. V magistrski nalogi kvantitativno ovrednotite in medsebojno primerjajte lastnosti različnih uveljavljenih postopkov projekcije 3D slik za namen poravnave pred- in med-operativno zajetih 3D in 2D medicinskih slik.

Language:Slovenian
Keywords:projekcijski algoritmi, slikovno voden klinični poseg, pospešitev algoritmov na GPE
Work type:Master's thesis/paper
Organization:FE - Faculty of Electrical Engineering
Year:2020
PID:20.500.12556/RUL-116838 This link opens in a new window
Publication date in RUL:12.06.2020
Views:1187
Downloads:204
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Comparative analysis of 3D image projection algorithms
Abstract:
Invasiveness of surgical interventions can be mitigated by planning on preoperative 3D medical images and by real-time closed-loop visual guidance based on live 2D image during the intervention. Mapping the information extracted from 3D image into patient space requires spatial alignment of pre-interventional 3D and intra-interventional 2D images. The aim of this thesis is to quantitatively assess and comparatively evaluate the performances of several state-of-the-art 3D-to-2D image projection methods.

Keywords:projection algorithms, image guided surgery, algotihm acceleration on GPU

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back