izpis_h1_title_alt

Rack invariants of links in L(p,1)
ID Horvat, Eva (Author)

.pdfPDF - Presentation file, Download (628,58 KB)
MD5: 46B2A68CE75EA151EA7EA2EC682B4086

Abstract
We describe a presentation for the augmented fundamental rack of a link in the lens space ▫$L(p,1)$▫. Using this presentation, the (enhanced) counting rack invariants that have been defined for the classical links are applied to the links in ▫$L(p,1)$▫. In this case, the counting rack invariants also include the information about the action of ▫$\pi_{1}(L(p,1))$▫ on the augmented fundamental rack of a link.

Language:English
Keywords:racks, counting invariants, links in lens spaces
Work type:Article
Typology:1.01 - Original Scientific Article
Organization:PEF - Faculty of Education
Year:2019
Number of pages:art. 1950070
Numbering:Vol. 28, no. 10
PID:20.500.12556/RUL-116714 This link opens in a new window
UDC:515.162
ISSN on article:0218-2165
DOI:10.1142/S0218216519500706 This link opens in a new window
COBISS.SI-ID:18736985 This link opens in a new window
Publication date in RUL:05.06.2020
Views:1082
Downloads:398
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Record is a part of a journal

Title:Journal of knot theory and its ramifications
Shortened title:J. knot theory ramif.
Publisher:World Scientific
ISSN:0218-2165
COBISS.SI-ID:3996249 This link opens in a new window

Secondary language

Language:Slovenian
Title:Klapne invariante spletov v lečastem prostoru L(p,1)
Abstract:
Opišemo prezentacijo avgmentirane fundamentalne klape spleta v lečastem prostoru ▫$L(p,1)$▫. Z uporabo te prezentacije lahko preštevalne invariante klasičnih spletov uporabimo za splete v ▫$L(p,1)$▫. V tem primeru preštevalne invariante vključujejo informacijo o delovanju fundamentalne grupe lečastega prostora na fundamentalno klapo spleta.


Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back