izpis_h1_title_alt

Razvoj priporočilnega sistema za spletno igralnico s strojnim učenjem : magistrsko delo
ID Benedičič, Lea (Author), ID Todorovski, Ljupčo (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (1012,88 KB)
MD5: BC4E74261A7146189CF0C6065933DF26

Abstract
Za spletno igralnico razvijemo priporočilni sistem, ki bo igralcu na podlagi zgodovine prej izbranih iger predlagal naslednjo. Za gradnjo priporočilnega sistema uporabimo kombinacijo nenadzorovanega in nadzorovanega učenja. Nenadzorovano učenje uporabimo za hierarhično gručenje iger, kar nam pomaga rešiti problem velikega števila razpoložljivih iger v spletni igralnici. Tako se z nadzorovanim učenjem, ki uporablja prehodne matrike markovskih verig, lahko učimo verjetnosti prehodov med gručami iger. Priporočilni sistem, zgrajen na ta način, omogoča visoko točnost napovedi gruče naslednje igre, ki jo izbere igralec. Primerjava z nekaj bolj preprostimi algoritmi napovedovanja naslednje gruče potrdi premoč uporabljene kombinacije pristopov. Treba je poudariti, da razviti sistem ne priporoča posameznih iger, temveč gruče iger. Določanje posamezne igre tako prepustimo spletni igralnici, lahko pa bi v ta namen uporabili tudi v delu predstavljeno gručenje igralcev na osnovi vzorcev njihovega igranja.

Language:Slovenian
Keywords:strojno učenje, gručenje podatkov, napovedno modeliranje, priporočilni sistem
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2020
PID:20.500.12556/RUL-116180 This link opens in a new window
UDC:004.8
COBISS.SI-ID:21673475 This link opens in a new window
Publication date in RUL:21.05.2020
Views:9042
Downloads:159
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Development of recommendation system for Web casino with machine learning
Abstract:
We develop a recommendation system, for the online casino, which will suggest the next game to a player based on the games previously selected. The system is based on a combination of unsupervised and supervised learning. Unsupervised learning is used for hierarchical clustering of games which helps solve the problem of large number of available games on the online casino. In turn, we use supervised learning based on Markov chain transition matrices to infer the probabilities of transition between game clusters. We empirically show that the recommendation system allows for accurate prediction of the cluster of the next game for an observed player. A comparison with simple, baseline algorithms confirms the superiority of the proposed approach. It should be emphasized that the developed system does not recommend individual games but a cluster of games. The selection of a particular game from the cluster might be left to the online casino software. Alternatively, the selection can be based on the clustering of players base on their gaming patterns.

Keywords:machine learning, clustering, predictive modeling, recommendation system

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back