izpis_h1_title_alt

Estimates of covering type and the number of vertices of minimal triangulations
ID Govc, Dejan (Author), ID Marzantowicz, Wacław (Author), ID Pavešić, Petar (Author)

.pdfPDF - Presentation file, Download (186,16 KB)
MD5: 9778A3C60E38B8FFFDB1D7934419B5A7

Abstract
The covering type of a space $X$ is a numerical homotopy invariant which in some sense measures the homotopical size of $X$. It was first introduced by Karoubi and Weibel (in Enseign Math 62(3-4):457-474, 2016) as the minimal cardinality of a good cover of a space $Y$ taken among all spaces that are homotopy equivalent to $X$. We give several estimates of the covering type in terms of other homotopy invariants of $X$, most notably the ranks of the homology groups of $X$, the multiplicative structure of the cohomology ring of $X$ and the Lusternik-Schnirelmann category of $X$. In addition, we relate the covering type of a triangulable space to the number of vertices in its minimal triangulations. In this way we derive within a unified framework several estimates of vertex-minimal triangulations which are either new or extensions of results that have been previously obtained by ad hoc combinatorial arguments.

Language:English
Keywords:covering type, minimal triangulation, Lusternik-Schnirelmann category, cup-length
Typology:1.01 - Original Scientific Article
Organization:FMF - Faculty of Mathematics and Physics
Year:2020
Number of pages:Str. 31-48
Numbering:Vol. 63, iss. 1
PID:20.500.12556/RUL-115223 This link opens in a new window
UDC:515.14
ISSN on article:0179-5376
DOI:10.1007/s00454-019-00092-z This link opens in a new window
COBISS.SI-ID:18627417 This link opens in a new window
Publication date in RUL:18.04.2020
Views:1096
Downloads:370
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Record is a part of a journal

Title:Discrete & computational geometry
Shortened title:Discrete comput. geom.
Publisher:Springer
ISSN:0179-5376
COBISS.SI-ID:25342208 This link opens in a new window

Secondary language

Language:Slovenian
Title:Ocene tipa pokritja in števila oglišč v minimalnih triangulacijah
Abstract:
Tip pokritja prostora $X$ je homotopska invarianta, ki v določenem smislu meri homotopsko velikost $X$. Vpeljala sta jo Karoubi in Weibel kot minimalno moč dobrega pokritja prostora $Y$ med vsemi prostori $Y$, ki so homotopsko ekvivalentni $X$. V članku podamo vrsto ocen za tip pokritja s pomočjo drugih homotopskih invariant, med katerimi izstopajo homološke grupe, kohomološki kolobar in Lusternik-Schnirelmannova kategorija. Poleg tega v članku povežemo tip pokritja poliedra s številom oglišč v minimalni triangulaciji. Tako izpeljemo na enovit način vrsto ocen, ki so bodisi nove, bodisi posplošitve ocen, ki so v preteklosti slonele na ad hoc kombinatornih ocenah.

Keywords:tip pokritja, minimalna triangulacija, Lusternik-Schnirelmannova kategorija, dolžina kohomološkega produkta

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back