izpis_h1_title_alt

Klasifikacija virusnih in bakterijskih genomov s konvolucijskimi nevronskimi mrežami
ID Alič, Anže (Author), ID Curk, Tomaž (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (2,31 MB)
MD5: D673925214D9182BCCA0E77B4244D4CA

Abstract
V diplomski nalogi smo razvili nevronsko mrežo za napovedovanje uvrstitve v taksonomijo organizma na podlagi kratkih izsekov genoma, ki jih pridobimo s sekvenciranjem. Ovrednotili smo uporabo dodatnih opisov genoma in uporabo dodatnih relacij med ciljnimi razredi. Za reševanje problema in gradnjo napovednih modelov smo uporabili globoke konvolucijske nevronske mreže. Predlagano metodo smo preizkusili na referenčnih genomih virusov in bakterij. Eksperimentalni rezultati pokažejo, da smo zastavljen problem rešili uspešno, saj smo, v najboljšem primeru, dosegli ROC AUC 0.92. Dodatni opisi genoma ne izboljšajo uspešnosti napovednega modela. Uporaba dodatnih relacij v obliki taksonomije zelo izboljša napovedni model, saj nevronska mreža, kljub manjšemu številu učnih podatkov, uspešno generalizira zastavljen problem.

Language:Slovenian
Keywords:CNN, bioinformatika, klasifikacija virusov in bakterij, genomski pripisi
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
FMF - Faculty of Mathematics and Physics
Year:2020
PID:20.500.12556/RUL-114438 This link opens in a new window
COBISS.SI-ID:1538544067 This link opens in a new window
Publication date in RUL:28.02.2020
Views:1403
Downloads:212
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Viral and bacterial genome classification using convolutional neural networks
Abstract:
We have developed a neural network for assigning taxonomic labels based on short genome sequences. Sequences are collected with next-generation sequencing. We evaluated the contribution of extra attributes of genome and the influence of using extra dependencies between target classes, which are encoded as a taxonomy. We designed a deep convolutional neural network and evaluated it on reference genomes of viruses and bacteria. Experiments show that at best we can achieved a ROC AUC score of 0.92. We observed, that the use of extra attributes did not improve accuracy. However, using the information on extra dependencies among target classes decreased the number of training data needed for training the convolutional neural network.

Keywords:CNN, bioinformatics, virus and bacteria classification, genome annotation

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back