izpis_h1_title_alt

Karakterizacija in razpoznavanje zvokov ventilov ogrevalnih sistemov
ID Vodopivec, Lučka (Author), ID Govekar, Edvard (Mentor) More about this mentor... This link opens in a new window, ID Potočnik, Primož (Comentor)

.pdfPDF - Presentation file, Download (4,57 MB)
MD5: 851B5D1AFFFA804BA297B9CFF1349685

Abstract
V magistrskem delu obravnavamo karakterizacijo in razpoznavanje zvokov ventilov grelnih sistemov. Med seboj primerjamo hrup ventilov najrazličnejših dimenzij, funkcij in geometrije. Na podlagi podatkovne baze zvočnih posnetkov oblikujemo primerne kategorije hrupa. S pomočjo statistične analize zvočnih signalov, ki jih izmerimo na ventilih, izpeljemo statistične značilke v časovni in frekvenčni domeni. Iščemo načine, kako na podlagi značilk zvočne signale pravilno razvrstiti v kategorije. S pomočjo odločitvenih pragov naredimo več razvrstitvenih modelov v obliki odločitvenih dreves. Zaporedje vozlišč in vrednosti odločitvenih pragov generiramo ročno in numerično. Pri tem so naše zahteve enostavno odločitveno drevo, majhna skupna povprečna ocena napake pri razvrstitvi in dobro ločevanje pojavov piskanja in kavitiranja. Glede na to ugotovimo, da sta za uporabo v praksi najbolj primerna dva modela. Prvo je odločitveno drevo razvejenosti 11, ki ima najmanjšo skupno povprečno napako pri razvrstitvi. Drugo je odločitveno drevo, katerega zgradba je določena ročno, odločitveni pragovi pa numerično. To drevo najbolje loči pojava piskanje in kavitiranje.

Language:Slovenian
Keywords:ventili, zvok, hrup, karakterizacija, razvrščaje, statistična analiza, odločitvena drevesa
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FS - Faculty of Mechanical Engineering
Place of publishing:Ljubljana
Publisher:[L. Vodopivec]
Year:2020
Number of pages:XXI, 63 str.
PID:20.500.12556/RUL-114433 This link opens in a new window
UDC:621.646.2:534:519.22(043.2)
COBISS.SI-ID:17070363 This link opens in a new window
Publication date in RUL:28.02.2020
Views:1148
Downloads:255
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Characterization and recognition of valve sounds of heating systems
Abstract:
In the master's thesis we explore the problem of characterization and recognition of sounds on the valves of heating systems. We compare noise on the valves of various dimensions, functions and geometry. Based on the data base of soundtracks, suitable noise categories are formed. We extract statistical features in the time and frequency domains, with the help of statistical analysis of sound signals measured on valves. Based on the extracted features, we propose means to classify the sound signals into proper categories. With the help of decision thresholds we develop several classifying models formulated as decision trees. The sequence of nodes and value of decision thresholds are generated manually and numerically. Our requirements are a simple decision tree, low classification loss and a good separation of the phenomena of squealing and cavitation. According to our requirements we choose two models that are most suitable for practical use. First is decision tree with branching level 11, which has the lowest classification loss. Second is decision tree with manually defined structure and numerically defined decision thresholds. The latter best distinguishes phenomena of squealing and cavitating.

Keywords:valves, sound, noise, characterization, classification, statistic analysis, decision trees

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back