Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Repository of the University of Ljubljana
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Details
Prepoznavanje šarenice s pomočjo nevronskih mrež
ID
Polanc, Uroš
(
Author
),
ID
Batagelj, Borut
(
Mentor
)
More about this mentor...
PDF - Presentation file,
Download
(3,49 MB)
MD5: DD51987DD984D32A3E4AD9FE2E540772
Image galllery
Abstract
Naloga obravnava pristop prepoznavanja oseb na podlagi šarenice z nevronskimi mrežami. Ideja je, da na sliki očesa pravilno detektiramo območje šarenice, s katerega nato s primernimi metodami pridobimo tako imenovan vektor značilk. Vektor značilk predstavlja kratek in unikaten opis posamezne slike. Za nevronske mreže smo uporabili klasične nevronske mreže, ki smo jim kot vhod podali vektorje značilk. Na koncu smo preizkusili še konvolucijske nevronske mreže, kjer smo kot vhod podali originalno sliko. Pri klasičnih nevronskih mrežah smo testirali večje število kombinacij metod izboljšave slike, metod izbire značilk ter nevronskih mrež. Izkazalo se je, da mreže za prepoznavanje vzorcev v kombinaciji z Gaborjevimi filtri dosegajo točnost 95,7 procenta. Pri konvolucijskih nevronskih mrežah pa se je najbolje izkazala mreža ResNet50 s točnostjo 96,4 procenta.
Language:
Slovenian
Keywords:
računalniški vid
,
globoko učenje
,
nevronske mreže
,
konvolucijske nevronske mreže
,
segmentacija šarenice
,
prepoznavanje šarenice
Work type:
Bachelor thesis/paper
Typology:
2.11 - Undergraduate Thesis
Organization:
FRI - Faculty of Computer and Information Science
Year:
2020
PID:
20.500.12556/RUL-114423
COBISS.SI-ID:
1538546115
Publication date in RUL:
27.02.2020
Views:
3922
Downloads:
346
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
POLANC, Uroš, 2020,
Prepoznavanje šarenice s pomočjo nevronskih mrež
[online]. Bachelor’s thesis. [Accessed 24 March 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=114423
Copy citation
Share:
Secondary language
Language:
English
Title:
Iris recognition using artificial neural networks
Abstract:
The thesis deals with the approach of iris recognition using neural networks. The idea is to correctly detect the iris region from the image of the eye, from which, using suitable algorithms and methods, we then obtain the so-called feature vector. The feature vector represents a compact and unique description of each image, which is then passed to different neural networks. For the neural networks, we use classical neural networks, which are given feature vectors as input. In the end, we also test the convolutional neural networks where the original image is given as input. For classical neural networks, we tested a large number of combinations of image enhancement methods, feature extraction methods and neural networks. Pattern recognition network, in combination with Gabor filters, has been shown to achieve the best accuracy of 95.7 percent. Meanwhile, for convolutional neural networks, the ResNet50 network performed best with an accuracy of 96.4 percent.
Keywords:
computer vision
,
deep learning
,
neural network
,
convolutional neural network
,
iris segmentation
,
iris recognition
Similar documents
Similar works from RUL:
Classification of heart arythmias with deep neural networks
Automatic segmentation of anisotropic electron microscope data
Detection of passengers in a car
Detection of dart positions with computer vision
Generating gameplay story with neural network in a text-based game
Similar works from other Slovenian collections:
Person age estimation based on digital images using convolutional neural networks
Back