izpis_h1_title_alt

Pregled in primerjava računskih pristopov za analizo ritmičnega izražanja genov
ID Miškić, David (Author), ID Moškon, Miha (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (1,10 MB)
MD5: B24EC7033E286567131C202B041B1B7C

Abstract
Pri modeliranju bioloških procesov pogosto naletimo na vzorce, ki se težko opišejo z obstoječimi metodami modeliranja in napovedovanja. To še posebno velja za analizo ritmičnega izražanja, saj se mora metoda spopasti z variacijami amplitud, period, faznih zamikov ter manjšim vzorcem, ki je pogosto onesnažen s človeškimi napakami. Zato je pomembno vedeti, kako se obnesejo obstoječe metode za take primere, in katere med njimi so bolj primerne in katere manj. Delo se posveča pregledu nekaterih obstoječih metod in optimalnemu izboru implementacij med obravnavanimi glede na doseženo točnost, ki jo dosežejo v petih serijah sintetično generiranih podatkov z različnimi parametri. S pomočjo rezultatov določimo, katere metode se obnesejo v katerih pogojih in kateri pogoji vzorčenja proizvedejo najbolj primerne podatke za analize. Na koncu izvedbo analize ritmičnosti naredimo še na primeru transkriptomskih podatkov, ki so bili pridobljeni iz javno dostopne podatkovne baze GEO.

Language:Slovenian
Keywords:modeliranje, računska biologija, sistemska biologija, regresija, cirkadiani ritmi
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2020
PID:20.500.12556/RUL-114119 This link opens in a new window
COBISS.SI-ID:1538535619 This link opens in a new window
Publication date in RUL:18.02.2020
Views:859
Downloads:196
Metadata:XML RDF-CHPDL DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Overview and comparison of computational approaches for the analysis of rhythmicity in gene expression data
Abstract:
When modelling biological processes, we often find ourselves faced with complex patterns, that cannot be adequately described by existing methods of modelling and data prediction. That applies well when data contains rhythmical elements, as chosen method must be able to process amplitude, period and acrophase variations coupled with smaller data set, which is often biased by human error. With this in mind, it is important to know which methods currently in use can be best suited for such problems. In this work we will focus on few selected methods and their performance in five different synthetically generated data series. With the help of obtained results we will be able to determine which method is better suited for which conditions and performs best in most series, as well as which sampling conditions produce most and least suited data for further computational analyses. We demonstrate the application of selected methods on the analysis of transcriptomic data obtained from GEO database.

Keywords:modelling, computational biology, systemic biology, regression, circadian rhythms

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back