izpis_h1_title_alt

Analiza prostorov primerov matematičnih pojmov
ID Vrečar, Ana (Author), ID Magajna, Zlatan (Mentor) More about this mentor... This link opens in a new window, ID Mastnak, Adrijana (Comentor)

URLURL - Presentation file, Visit http://pefprints.pef.uni-lj.si/6167/ This link opens in a new window

Abstract
Prostor primerov tvori nabor primerov (natančneje: primerov, proti-primerov in ne-primerov), do katerih ima posameznik dostop v vsakem trenutku, in povezave med temi primeri. Posameznik si preko primerov oblikuje matematični pojem, skupek primerov pa tvori posameznikov osebni prostor primerov tega pojma. Na osebni prostor primerov učencev vplivajo tudi primeri, ki so predstavljeni v šolskih učbenikih. Ti primeri tvorijo konvencionalni prostor primerov. V teoretičnem delu magistrske naloge smo predstavili več klasifikacij primerov ter njihov pomen pri učenju matematike. Poudarili smo pomembnost učiteljeve izbire primerov ter posameznikovega samostojnega konstruiranja primerov, opredelili smo pojem prostora primerov ter ločili več vrst prostorov primerov, posebej podrobno smo opisali konvencionalni in osebni prostor primerov. V empiričnem delu smo z analizo več matematičnih učbenikov raziskali konvencionalni prostor primerov dveh matematičnih pojmov (paralelogram in trapez). Z analizo učiteljevih učnih priprav ter učenčevih zvezkov smo preučili, v kolikšni meri bolj in manj izkušeni učitelji pri svojem poučevanju uporabljajo različne vrste primerov, ali so njihovi primeri načrtovani ali spontani, kako se glede na izkušenost učitelja razlikujejo primeri, ki jih predstavijo svojim učencem, ter s preizkusom ugotovili, kakšne osebne prostore primerov si ob tem ustvarijo učenci. Rezultati raziskave kažejo, da šolski učbeniki tako rekoč ne vsebujejo referenčnih primerov in ne-primerov, ne spodbujajo učencev h konstruiranju lastnih primerov, prav tako ne vsebujejo nalog, kjer bi učenci samostojno raziskovali lastnosti, ki veljajo za določen štirikotnik. Izmed analiziranih učbenikov je v pogledu prisotnosti primerov najbolj kakovosten učbenik Stičišče 7. Pri analizi učnih priprav različno izkušenih učiteljev smo ugotovili, da v večini učencem predstavijo zgolj like v tradicionalni legi, drugih referenčnih primerov pa ne obravnavajo, ne spodbujajo učencev h konstruiranju lastnih primerov, ne obravnavajo ne-primerov, tudi obravnava posebnih primerov ni dovolj temeljita. Večina učiteljevih primerov je načrtovanih. Pri analizi preizkusa za učence smo ugotovili, da imajo v povprečju učenci učiteljev začetnikov bolj bogat osebni prostor primerov za učno temo paralelogram, učenci izkušenih učiteljev pa imajo osebni prostor primerov bolje strukturiran, posebej to velja za učni temi trapez in pravokotnik.

Language:Slovenian
Keywords:konvencionalni prostor primerov
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:PEF - Faculty of Education
Year:2020
PID:20.500.12556/RUL-113795 This link opens in a new window
COBISS.SI-ID:12790345 This link opens in a new window
Publication date in RUL:10.02.2020
Views:883
Downloads:220
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Analysis of the example spaces of mathematical concepts
Abstract:
Example space consists of a set of examples (more precisely: examples, counter-examples and non-examples) that an individual can access along with the links between them. An individual forms a mathematical concept through examples, and the set of examples forms one‘s personal example space of that concept. The personal example space is also influenced by examples in school textbooks - these examples form the conventional example space. In the theoretical part of the thesis, we have presented several classifications of examples and their importance at learning mathematics. We emphasized the importance of the teacher's choice of examples and the individual's own construction of them. We defined the concept and different types of example spaces and described in detail the conventional and personal example space. In the empirical part of the thesis, we studied the conventional example space of two mathematical concepts (parallelogram and trapezium) by analysing several mathematical textbooks. By analysing teachers' lesson plans and students’ notebooks, we examined the extent to which experienced and novice teachers use different types of examples and whether their examples are pre-planned or spontaneous. Using a test of knowledge we compared the students’ personal example spaces of experienced and novice teachers. The results of the research show that Slovenian school textbooks do not contain reference examples and non-examples, they do not encourage students to construct their own examples and do not contain tasks with which the students would explore the properties of quadrilateral. We found that among the analysed textbooks Stičišče 7 provides the best set of examples for quadrilaterals. The analysis of teachers’ lesson plans revealed that they only consider geometric shapes in traditional position and that they do not present other reference examples, nor do they encourage students to construct their own examples. They do not deal with non-examples, nor do they present specific cases of concepts. Most of teacher’s examples are pre-planned. Finally, we found that, on average, novice teachers’ students have a richer personal example space for parallelograms, while experienced teachers’ students have a better structured example space, especially for the trapezium and rectangle.

Keywords:conventional example space

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back