izpis_h1_title_alt

Empirical credit risk modelling : a comparison of traditional statistical and machine learning classification methods for corporate credit scoring
ID Bider, Domen (Author), ID Berk Skok, Aleš (Mentor) More about this mentor... This link opens in a new window

URLURL - Presentation file, Visit http://www.cek.ef.uni-lj.si/magister/bider3579-B.pdf This link opens in a new window

Language:English
Keywords:banking, crediting, risk, risk management, models, measurements, research, analysis
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:EF - School of Economics and Business
Place of publishing:Ljubljana
Publisher:[D. Bider]
Year:2019
Number of pages:VI, 88, 33 str.
PID:20.500.12556/RUL-113593 This link opens in a new window
UDC:336.71
COBISS.SI-ID:25328358 This link opens in a new window
Publication date in RUL:06.02.2020
Views:1683
Downloads:134
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:Slovenian
Title:Empirični modeli kreditnega tveganja: primerjava tradicionalnih statističnih metod ter pristopov strojnega učenja na primeru poslovnih strank podjetja
Keywords:bančništvo, kreditiranje, tveganje, obvladovanje tveganj, modeli, meritve, raziskave, analiza

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back