Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Empirical credit risk modelling : a comparison of traditional statistical and machine learning classification methods for corporate credit scoring
ID
Bider, Domen
(
Author
),
ID
Berk Skok, Aleš
(
Mentor
)
More about this mentor...
URL - Presentation file, Visit
http://www.cek.ef.uni-lj.si/magister/bider3579-B.pdf
Image galllery
Language:
English
Keywords:
banking
,
crediting
,
risk
,
risk management
,
models
,
measurements
,
research
,
analysis
Work type:
Master's thesis/paper
Typology:
2.09 - Master's Thesis
Organization:
EF - School of Economics and Business
Place of publishing:
Ljubljana
Publisher:
[D. Bider]
Year:
2019
Number of pages:
VI, 88, 33 str.
PID:
20.500.12556/RUL-113593
UDC:
336.71
COBISS.SI-ID:
25328358
Publication date in RUL:
06.02.2020
Views:
1683
Downloads:
134
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Copy citation
Share:
Secondary language
Language:
Slovenian
Title:
Empirični modeli kreditnega tveganja: primerjava tradicionalnih statističnih metod ter pristopov strojnega učenja na primeru poslovnih strank podjetja
Keywords:
bančništvo
,
kreditiranje
,
tveganje
,
obvladovanje tveganj
,
modeli
,
meritve
,
raziskave
,
analiza
Similar documents
Similar works from RUL:
Similar works from other Slovenian collections:
Back