izpis_h1_title_alt

Odkrivanje anomalij v računalniških omrežjih iz podatkov časovnih vrst
ID VERLIČ, ALJAŽ (Author), ID Pejović, Veljko (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (1,70 MB)
MD5: D9A3BBC6260FF55E801EF3EFAF779955

Abstract
Brezžična mobilna omrežja postajajo vse bolj popularna in s tem naraste tudi potreba po kakovostnem nadzorovanju in odpravljanju težav na takšnih sistemih. Ob nepravilnem delovanju omrežij se spreminjajo omrežne meritve, ki nam povedo, ali se je zgodil nepričakovan dogodek - anomalija. V diplomski nalogi obravnavamo zaznavanje časovnih območij, v katerih so se zgodile anomalije. Gre za problem nadzorovanega učenja, katerega ciljni oznaki sta, ali je v določenem dogodku anomalija ali ne. Za iskanje smo uporabili dve metodi. Z metodo spremembe učnega koncepta iščemo anomalije, medtem ko s konvolucijsko nevronsko mrežo zaznavamo tudi velikosti območja anomalij. Slednja metoda uporablja princip klasifikacije časovnih vrst (angl. Time series classification). Iz ene časovne vrste gradimo več podvrst, ki jih nato uporabimo za vhodne atribute za konvolucijske nevronske mreže. Na podatkih definiramo oceno za uspešnost napovedovanja in z njo ocenimo različne nevronske mreže. S poskusi pokažemo, da najprimernejši model napove z vrednostjo 73 % ocene F1.

Language:Slovenian
Keywords:omrežni podatki, anomalije, časovne vrste, sprememba učnega koncepta, konvolucijske nevronske mreže, brezžična mobilna omrežja
Work type:Bachelor thesis/paper
Organization:FRI - Faculty of Computer and Information Science
Year:2019
PID:20.500.12556/RUL-113560 This link opens in a new window
COBISS.SI-ID:1538503875 This link opens in a new window
Publication date in RUL:21.01.2020
Views:1402
Downloads:226
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Discovering anomalies in computer networks from time series data
Abstract:
Mobile broadband networks are increasingly becoming more popular, thus increasing the need for quality monitoring and troubleshooting such systems. In the case of a malfunctioning network, the measured metrics get affected, indicating that an unexpected event — an anomaly — has occurred. This thesis deals with detecting time periods in which anomalies occurred. It is a problem of supervised learning where each measurement instance is marked as either anomalous or normal. We used two methods to search anomalies. The Concept drift method searches for anomalies, while the convolutional neural network also attempts to detect the size of anomaly regions. The latter method used the principle of time series classification. From one time series, we build several shorter series, which are then used as input attributes for convolutional neural networks. We evaluate the methods’ ability to detect and correctly determine the time period affected by anomalies on a real-world MBB measurement trace. Experiments show that the most appropriate neural network model predicts anomaly zones with a 73 % F1 score.

Keywords:network data, anomalies, time series, Concept drift, convolutional neural networks, mobile broadband

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back