V delu se lotimo problema napovedovanja cen električne energije, kjer na trgu udeleženci tekmujejo za čim večji profit. V zadnjem obdobju s prehodom na obnovljive vire energije je trg postal bolj nepredvidljiv in odvisen od okoljskih dejavnikov.
V naših eksperimentih uporabimo različne statistične modele in modele strojnega učenja v kombinaciji s podatkovno zbirko Evropske mreže operaterjev električnega omrežja in Evropskega meteorološkega inštituta. Vse zbirke združimo v štiri različne podatkovne množice in sledimo cevovodu strojnega učenja. Najprej izberemo atribute, nato hiper-parametre modelov in nazadnje ovrednotimo modele na testni množici.
V nasprotju s pričakovanji, dodatne vremenske informacije niso pripomogle k izboljšanju uspeha modelov ter so imele celo negativen vpliv na napovedno uspešnost. Rezultati smo uspeli izboljšati, ko smo uvedli dodatne atribute iz Evropske mreže operaterjev, kjer so se za najpomembnejše izkazale zakasnjene vrednosti ciljne spremenljivke in pretekle ter napovedane porabe električne energije.
Najboljši rezultat smo dosegli z metodo ansamblov z uporabo poznega zlivanja. Ansambel doseže napako sMAPE 13,084, drugi najboljši model, nevronska mreža, 14,392, referenčni model pa napako 22,963.
|