Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Repository of the University of Ljubljana
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Details
Sledenje materialnemu toku na osnovi radiofrekvenčne identifikacije
ID
Hočevar, Žiga
(
Author
),
ID
Kušar, Janez
(
Mentor
)
More about this mentor...
,
ID
Vrabič, Rok
(
Comentor
)
PDF - Presentation file,
Download
(4,57 MB)
MD5: A2070F6BF68C1E81DC377F8B59CD98CD
Image galllery
Abstract
Sledenje materialnih tokov je ključnega pomena pri obvladovanju proizvodnje in njeni optimizaciji. Magistrsko delo temelji na hipotezi, da je boljše sledenje materialnih tokov mogoče doseči z uporabo radiofrekvenčne identifikacije (RFID). Z uvedbo sistemov za lokalizacijo v realnem času lahko optimiziramo širok spekter procesov, predvsem pa zmanjšamo časovne izgube. Na podlagi proučene literature in obstoječih rešitev na trgu smo predstavili več konceptov za sledenje materialnih tokov v notranjem okolju. Z metodo večparametrskega odločanja je bil za najustreznejšo rešitev izbran hibridni sistem. Z analizo stroškov in koristi smo ugotovili, da bi imela investicija v izbrano rešitev pozitiven vpliv na poslovanje podjetja. Z uporabo RFID je pričakovano izboljšanje učinkovitosti proizvodnje in notranje logistike. Zaradi večje preglednosti pa bosta posredna učinka tudi zmanjševanje časov za iskanje materiala in bistveno skrajšanje inventurnega postopka.
Language:
Slovenian
Keywords:
materialni tok
,
radiofrekvenčna identifikacija
,
lokalizacija v realnem času
,
oznake
,
analiza stroškov. analiza koristi
Work type:
Master's thesis/paper
Typology:
2.09 - Master's Thesis
Organization:
FS - Faculty of Mechanical Engineering
Place of publishing:
Ljubljana
Publisher:
[Ž. Hočevar]
Year:
2019
Number of pages:
XXI, 101 str.
PID:
20.500.12556/RUL-112579
UDC:
658.51:621.396.44(043.2)
COBISS.SI-ID:
16957467
Publication date in RUL:
25.10.2019
Views:
2546
Downloads:
250
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
HOČEVAR, Žiga, 2019,
Sledenje materialnemu toku na osnovi radiofrekvenčne identifikacije
[online]. Master’s thesis. Ljubljana : Ž. Hočevar. [Accessed 22 March 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=112579
Copy citation
Share:
Secondary language
Language:
English
Title:
Material flow tracking based on radio frequency identification
Abstract:
Materials management in Engineer-To-Order (ETO) companies is a key function that significantly contributes to the success of a project and has a great impact on process optimization. The thesis builds on the hypothesis, that better tracking of material flow can be achieved using radio frequency identification (RFID). RFID technology enables the optimization of manufacturing process by eliminating waste and reducing lead-times. Based on existing solutions, we introduce several concepts for tracking material flow in an indoor environment. Based on multi-attribute decision model, the hybrid solution is selected as most appropriate. By analyzing the costs and benefits we discover, that investing in project would have a positive benefit to the company. The use of RFID is expected to improve production efficiency and internal logistics. Improved inventory control and visibility would also reduce material search times and significantly shorten the process of taking the inventory.
Keywords:
material flow
,
radio frequency identification
,
real-time location system
,
tags
,
cost benefit
,
cost analysis
Similar documents
Similar works from RUL:
Generative adversarial model based augmentation of angiographic images for improved detection of intracranial aneurysms
Shape detection and cut optimization of hot-rolled plates
Virtual hair makeover using computer vision tools
Development of a postprocessor for robotic wire arc additive manufacturing
Development of a digital twin of a robotic welding cell
Similar works from other Slovenian collections:
Frequency range optimization for continuous wave Terahertz imaging
Klasifikacija možganskih lezij z umetno nevronsko mrežo
Person age estimation based on digital images using convolutional neural networks
Back