Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Repository of the University of Ljubljana
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Details
Nevronsko strojno prevajanje literarnih besedil iz angleščine v slovenščino
ID
Kuzman, Taja
(
Author
),
ID
Vintar, Špela
(
Mentor
)
More about this mentor...
PDF - Presentation file,
Download
(1,76 MB)
MD5: D526F14A6EF5A8616846DBEBAABB6012
PDF - Appendix,
Download
(341,78 KB)
MD5: 1224E9659579C5B920643A5FDF5EA0BC
PDF - Appendix,
Download
(188,09 KB)
MD5: A56B20A4559707CE0E6310651A343756
Image galllery
Abstract
Raziskave so pokazale, da dosegajo nevronski strojni prevajalniki obetavne rezultate pri prevajanju literarnih besedil. Strojno prevajanje literature iz angleščine v slovenščino pa še ni bilo raziskano, zato je namen tega dela razvoj nevronskega strojnega prevajalnika v več različicah, prilagojenega za prevajanje literature, in primerjava lastnih prevajalnikov s splošnim prevajalnikom Google Translate. Da bi ugotovila, ali specializirani modeli dosežejo boljše rezultate kot splošni prevajalnik Google Translate in ali je prevajalnik, specializiran za prevajanje romanov ene avtorice, uspešnejši kot prevajalnik, specializiran na različnih literarnih delih, primerjam prevajalnike z metrikama BLEU in METEOR, analizo napak strojnih prevodov, ocenjevanjem berljivosti in ustreznosti ter merjenjem zahtevnosti popravljanja. Analiza je pokazala, da je popravljanje strojnih prevodov vseh treh prevajalnikov hitrejše od prevajanja od začetka. Vse metode evalvacije razen ocene berljivosti so potrdile, da je prevajalnik, specializiran za prevajanje romanov ene avtorice, uspešnejši kot prevajalnik, naučen na korpusu različnih literarnih del. Kljub vsemu pa pri vseh metodah evalvacije dosega najboljše rezultate prevajalnik Google Translate. Raziskava razkriva tudi velike nekonsistentnosti med udeleženci pri ocenjevanju berljivosti in ustreznosti ter pri merjenju zahtevnosti popravljanja. Rezultati nakazujejo na to, da morda te metode niso zanesljive, zato bi bilo dobro te ugotovitve nadaljnje raziskati.
Language:
Slovenian
Keywords:
strojno prevajanje
,
strojna evalvacija
,
ročna evalvacija
,
zahtevnost popravljanja
,
analiza napak
Work type:
Master's thesis/paper
Organization:
FF - Faculty of Arts
Year:
2019
PID:
20.500.12556/RUL-111853
Publication date in RUL:
16.10.2019
Views:
3936
Downloads:
786
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
KUZMAN, Taja, 2019,
Nevronsko strojno prevajanje literarnih besedil iz angleščine v slovenščino
[online]. Master’s thesis. [Accessed 26 March 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=111853
Copy citation
Share:
Secondary language
Language:
English
Title:
Neural machine translation of literary texts from English to Slovene
Abstract:
Neural Machine Translation (NMT) has shown a promising performance on literary texts. Since the literary machine translation has not yet been researched for the English-to-Slovene translation direction, this Master’s thesis aims to bridge this gap by presenting a comparison among bespoke NMT models, tailored to novels, and Google Translate. To determine whether models, adapted to literary texts, perform better than Google Translate, and to establish whether an adaptation to a specific author further improves the performance of the NMT system, models were evaluated by the BLEU and METEOR metrics, error analysis of machine translation output, assessment of fluency and adequacy, and measurement of the post-editing (PE) effort. The findings show that all evaluated NMT approaches resulted in increases in translation productivity. The model, tailored to a specific author, performs better than the model, trained on a literary corpus, based on all scores except the scores for fluency. However, Google Translate still outperforms all bespoke models. The evaluation reveals a very low inter-rater agreement on fluency and adequacy, based on the kappa coefficient values, and significant discrepancies between post-editors. This suggests that these methods are not reliable, which should be addressed in future studies.
Keywords:
neural machine translation
,
automatic evaluation
,
human evaluation
,
post-editing effort
,
error analysis
Similar documents
Similar works from RUL:
Time Series with Classification and Rejection
Segmentacija rok za obogateno resničnost
Playing piano with the assistance of augmented-reality
Reflectance probe interpolation for fast rendering of reflective materials
Gesture recognition in video streams on an embedded device
Similar works from other Slovenian collections:
No similar works found
Back