izpis_h1_title_alt

ANALIZA FARMACEVTSKIH KAPSUL IN PELET S STROJNIM VIDOM
ID Mehle, Andraž (Author), ID Tomaževič, Dejan (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (20,99 MB)
MD5: 4A7D98569D1274CFA663BB046C14B100

Abstract
V farmaciji je nadzor nad kakovostjo izdelkov izrednega pomena, saj lahko različne napake, ki nastanejo med proizvodnjo, pakiranjem ali transportom, vplivajo na učinkovitost in varnost zdravil. Zagotavljanje kakovosti v proizvodnji zdravil je zato zelo kompleksen problem, kjer zgolj kontrola kakovosti končnih izdelkov ni zadostna. Potreben je namreč nadzor vseh dejavnikov med proizvodnjo, ki lahko vplivajo na končno kakovost. To lahko vključuje vse od same zasnove proizvodnega obrata, posameznih procesov ali projektov do nadzora storitev in surovin. V takšnem sistemu kontrola kakovosti končnih izdelkov postane le še dokončna potrditev kakovosti. Uveljavljene metode nadzora kakovosti zato, poleg kontrole kakovosti končnih izdelkov, vključujejo tudi rutinsko kontrolo vhodnih surovin in polizdelkov s pomočjo analize vzorcev v analitskih laboratorijih. Kljub temu zaradi variabilnosti vhodnih surovin in variabilnosti posameznih procesnih korakov s takšno kontrolo pogosto ne moremo zanesljivo ovrednotiti kakovosti celotne šarže surovin ali polizdelkov. Poleg tega so laboratorijske analize vzorcev običajno zelo dolgotrajne. V zadnjem času se zato za zagotavljanje kakovosti med proizvodnjo vedno bolj uveljavlja spremljanje procesov z medprocesnimi meritvami kritičnih količin in parametrov. Poleg tega lahko z analizo rezultatov medprocesnih meritev dodatno optimiziramo energetsko učinkovitost in izkoristek procesov. Ena izmed ključnih elementov zagotavljanja kakovosti zdravil sta spremljanje in kontrola kakovosti vizualnih značilnosti surovin, polizdelkov in končnih izdelkov. Za ta namen se je na mnogih stopnjah proizvodnje zdravil že uveljavila ali pa se še uveljavlja tehnologija sistemov s strojnim vidom. Na primer za samodejno vizualno pregledovanje končnih izdelkov so se sistemi s strojnim vidom že dodobra uveljavili, saj so v primerjavi z ročnim pregledovanjem zanesljivejši in predvsem hitreši, kar omogoča pregled vseh proizvedenih izdelkov. Prav tako se rutinsko že uporabljajo različni laboratorijski sistemi s strojnim vidom za popolnoma samodejno kvantitativno analizo surovin in polizdelkov. V zadnjih letih pa se sistemi s strojnim vidom vedno bolj uveljavljajo tudi na področju medprocesnega spremljanja proizvodnih procesov. V doktorski disertaciji obravnavamo sisteme s strojnim vidom tako za kontrolo kakovosti končnih izdelkov kot tudi za medprocesno spremljanje in analizo procesov. V prvem delu predlagamo in ovrednotimo slikovno metodo za določitev območja oznak na slikah prozornih farmacevtskih kapsul za namen vizualne kontrole kakovosti. V drugem delu obravnavamo razvoj celovitega postopka za medprocesno spremljanje stopnje aglomeracije farmacevtskih pelet med oblaganjem s sistemom strojnega vida. Na koncu predlagamo uporabo metod strojnega učenja za izboljšanje točnosti in robustnosti medprocesne ocene stopnje aglomeracije.

Language:Slovenian
Keywords:strojni vid, farmacevtska tehnologija, farmacevtske kapsule, farmacevtske pelete, samodejno vizualno pregledovanje, prileganje predloge, razpoznava delcev, stopnja aglomeracije, konvolucijska nevronska mreˇza.
Work type:Doctoral dissertation
Organization:FE - Faculty of Electrical Engineering
Year:2019
PID:20.500.12556/RUL-111564 This link opens in a new window
Publication date in RUL:03.10.2019
Views:3021
Downloads:315
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:ANALYSIS OF PHARMACEUTICAL CAPSULES AND PELLETS USING MACHINE VISION
Abstract:
The quality control of products in the pharmaceutical industry is extremely important since various defects made during production, packaging or transportation can affect the effcacy and safety of medicines. Quality assurance in pharmaceutical manufacturing is thus a very complex problem, where quality control of end products alone is insuffcient. Namely, it requires monitoring and control of all the factors that can influence the end quality. These can include everything from the design of the manufacturing facility, individual processes or projects to the control of services and materials. In such systems, the quality control of end products serves only as the final confirmation of the quality. Established methods of quality assurance therefore include not only the quality control of end products, but also routine quality control of raw materials and intermediate products by sample analysis in analytical laboratories. However, due to the variability of raw materials and individual processing phases, it is often impossible to reliably evaluate the quality of the entire batch of raw materials or intermediate products. Besides, the analytical procedures are usually very time-consuming. Consequently, in-line and on-line monitoring of process critical parameters are currently being enforced. Additionally, we can exploit the gathered measurements for an advanced optimization of energy effciency and process yield. Some of the crucial elements of quality assurance of medicinal products are monitoring and quality control of visual characteristics of materials, intermediate products and end products. Machine vision is a promising technique that has already proven useful or is being promoted at various stages of pharmaceutical manufacturing processes. For example, machine vision systems for visual inspection of tablets and capsules have proven superior compared to manual visual inspection in terms of reliability and speed, which allows for the inspection of every single product in a batch. Likewise, various laboratory machine vision systems for fully automated analysis of raw materials and intermediate products are routinely employed. Moreover, in recent years, machine vision systems are increasingly being adopted for in-line and on-line monitoring of manufacturing processes. This dissertation studies machine vision systems for both quality control of end products as well as in-line monitoring and analysis of manufacturing processes. In the first part, we propose and validate an image analysis method for print region detection on images of transparent pharmaceutical capsules for visual quality control. In the second part, we describe a novel method for in-line monitoring of the agglomeration degree of pharmaceutical pellets during the coating process using machine vision. Furthermore, we propose a machine learning approach that improves the accuracy and robustness of in-line agglomeration degree estimation.

Keywords:Machine vision, Pharmaceutical technology, Pharmaceutical capsules, Pharmaceutical pellets, Automated visual inspection, Template matching, Particle recognition, Agglomeration degree, Convolutional neural network.

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back