Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Repository of the University of Ljubljana
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Details
Učinkovita implementacija sledilnika CSR-DCF
ID
MUHIČ, ANDREJ
(
Author
),
ID
Kristan, Matej
(
Mentor
)
More about this mentor...
PDF - Presentation file,
Download
(3,42 MB)
MD5: ED91A33956363B62BDA64FEA42A4334C
Image galllery
Abstract
V diplomski nalogi smo predstavili problem vizualnega sledenja poljubnemu objektu skozi sekvenco slik. Opisali smo diskriminativni korelacijski filter, ki predstavlja temeljno orodje za izgradnjo našega sledilnika. Osredotočili smo se na metodo CSR-DCF, ki korelacijske filtre izboljša z uporabo maske in kanalskih uteži. Maska določa, kateri piksli so pomembni za učenje filtra. Izračuna se jo na podlagi barvnega ujemanja ter prostorske zanesljivosti, uteži pa določajo diskriminativno moč posameznega kanala. Sledilnik je na lestvici VOT med najboljšimi, vendar je njegova glavna pomanjkljivost neučinkovita implementacija v jeziku Matlab. Ker smo želeli, da bi bil sledilnik široko dostopen ter da bi omogočal boljšo izrabo procesorske moči, smo ga implementirali v programskem jeziku C++ in ga vključili v prosto dostopno knjižnico OpenCV. S pomočjo ogrodja za testiranje kratkoročnih sledilnikov VOT smo izvedli analizo različnih parametrov sledilnika in primerjavo z originalno implementacijo v jeziku Matlab. Prišli smo do zaključka, da naša implementacija doseže primerljive rezultate ob višji hitrosti delovanja. Trenutno je sledilnik najboljši med vsemi sledilniki v knjižnici OpenCV, o čemer govori tudi dejstvo, da je dosegel prvo mesto v kategoriji realnočasovnih sledilnikov na lestvici VOT2017.
Language:
Slovenian
Keywords:
računalniški vid
,
vizualno sledenje
,
detekcija
,
korelacijski filtri
,
sledilnik
Work type:
Bachelor thesis/paper
Organization:
FRI - Faculty of Computer and Information Science
Year:
2019
PID:
20.500.12556/RUL-111522
COBISS.SI-ID:
1538395075
Publication date in RUL:
02.10.2019
Views:
2439
Downloads:
256
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
MUHIČ, ANDREJ, 2019,
Učinkovita implementacija sledilnika CSR-DCF
[online]. Bachelor’s thesis. [Accessed 20 March 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=111522
Copy citation
Share:
Secondary language
Language:
English
Title:
An efficient implementation of the CSR-DCF tracker
Abstract:
In this thesis we addressed the problem of visually tracking an object in a sequence of images. We described the discriminative correlation filter, which is a building block for our tracker. We also described the CSR-DCF method, that improves correlation filters by using a binary mask and channel weights. The mask determines which pixels are important for filter learning, and is calculated based on appearance likehood and spatial likehood, whereas channel weights determine the discriminative power of each channel. The tracker is one of the best on the VOT challenge, but its main drawback is the inefficient implementation in Matlab. We wanted to make the tracker widely accessible and have it run more efficiently. That is why we implemented it using C++ programming language and added it to OpenCV library. We used VOT framework to test the effects of different parameters on the speed and accuracy of this tracker, and to compare the original implementation in Matlab to ours. We concluded that our implementation produces similar results while running at a higher speed. The tracker is currently the best in OpenCV library, and was ranked first among realtime trackers on VOT2017.
Keywords:
computer vision
,
visual tracking
,
detection
,
correlation filters
,
tracker
Similar documents
Similar works from RUL:
Diskriminativni korelacijski filter s segmentacijo in uporabo konteksta za robustno sledenje
Sledenje objektov s segmentacijo in napovedovanjem globinskih barvnih slik
Segmentacija lebdečih predmetov v podatkih LIDAR
Učinkovita implementacija sledilnika CSR-DCF
Improved robust part-based model for visual object tracking
Similar works from other Slovenian collections:
No similar works found
Back