izpis_h1_title_alt

Razčlenitve grafov
ID Stojko, Jera (Author), ID Kuzman, Boštjan (Mentor) More about this mentor... This link opens in a new window

URLURL - Presentation file, Visit http://pefprints.pef.uni-lj.si/5984/ This link opens in a new window

Abstract
Magistrsko delo je s področja teorije grafov, natančneje, govori o razčlenitvi grafov. Različne oblike razčlenitve grafov se v praksi pogosto pojavljajo v problemih razporejanja objektov v skupine s posebnimi lastnostmi, zato jih srečujemo na različnih področjih od računalniških algoritmov do socialnih omrežij in matematičnih ugank. Razčlenitev ali dekompozicija grafa je zapis grafa z unijo podgrafov, tako da vsaka povezava grafa pripada natanko enemu podgrafu. V delu obravnavamo različne vrste razčlenitev. Če so podgrafi med seboj izomorfni, govorimo o izomorfni razčlenitvi grafa. Posebna oblika razčlenitve je faktorizacija. V tem primeru graf razčlenimo na vpete podgrafe. Poseben primer faktorizacije je k-faktorizacija, to je razčlenitev grafa na k-regularne vpete podgrafe. Pri vrednosti k=1 dobimo razčlenitev na 1-faktorje, ki jih z drugo besedo imenujemo popolna prirejanja. Gre za faktorizacijo na največje možno število izomorfnih faktorjev. V primeru 2-faktorizacije pa gre za razčlenitev na unije ciklov. Posebej lahko obravnavamo tudi drugačne razčlenitve. Za boljšo predstavo in razumevanje so predstavljeni zgledi razčlenitev in faktorizacij grafov. V delu se posebej posvetimo izomorfni faktorizaciji polnih grafov. Podan je dokaz izreka o deljivosti, ki so ga dokazali Harary, Robinson in Wormald [8]. Izrek o deljivosti nam pove, da polni graf reda n lahko razčlenimo na t izomorfnih faktorjev natanko tedaj, ko t deli število povezav polnega grafa. Dokaz izreka je konstruktiven in vsebuje opis konstrukcije ustreznih faktorjev za različne vrednosti parametrov n in t. Kot zgled uporabe tega izreka v poglavju o trideljivosti določimo vseh 9 tridelitev polnega grafa K6 in opišemo, kako bi poiskali vseh 41 tridelitev polnega grafa K7. V nadaljevanju predstavimo nekatere izreke o izomorfni razčlenitvi polnih grafov na največ možnih faktorjev (1-faktorizacija), na 2 izomorfna faktorja (sebi-komplementarni grafi), na poti ter na cikle (2-faktorizacija). Delitev na cikle je ločena na hamiltonske cikle, cikle poljubnih dolžin in najkrajše 3-cikle. Problem razčlenitve polnih grafov na 3-cikle je povezan s Steinerjevimi sistemi trojic. Torej, koliko trojic lahko sestavimo z danimi elementi, da bo vsak par elementov ležal v natanko eni od trojic. O razčlenitvi polnih grafov na cikle poljubnih dolžin nam govori domneva B. Alspacha, ki so jo nedavno dokazali D. Bryant in sodelavci [5]. V zvezi z razčlenitvijo grafov ostaja mnogo nerešenih domnev. Ena izmed njih je omenjena v nalogi. Govori o razčlenitvi polnih grafov na poljubne vnaprej predpisane izomorfne podgrafe, na primer drevesa. Ringel in Kotzig sta ugotovila, da je razčlenitev polnega grafa reda 2n+1 zagotovo možna na podgrafe velikosti n, če ima podgraf posebno lastnost, ki jo danes imenujemo, da je ``ljubek''. Izoblikovala se je domneva, da so vsa drevesa ljubka. V zaključku je predstavljenih še nekaj z razčlenitvami povezanih kombinatoričnih ugank, ki bi jih lahko uporabili tudi pri pouku matematike.

Language:Slovenian
Keywords:razčlenitev grafa
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:PEF - Faculty of Education
Year:2019
PID:20.500.12556/RUL-111114 This link opens in a new window
COBISS.SI-ID:12601673 This link opens in a new window
Publication date in RUL:25.09.2019
Views:1312
Downloads:160
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Graph decompositions
Abstract:
This master’s thesis in graph theory focuses on graph decomposition. In practice, various forms of graph decomposition often appear in problems of arranging objects in groups with special characteristics, which is why we come across them in various fields, ranging from computer algorithms to social networks and mathematical puzzles. Graph decomposition is a union of subgraphs such that every edge of the graph belongs to exactly one subgraph. In the thesis, we examine various types of decompositions. If the subgraphs are isomorphic, we talk about an isomorphic graph decomposition. A special form of decomposition is factorisation. In this case, the graph is decomposed into spanning subgraphs. A special case of factorisation is k-factorisation, i.e., a decomposition of a graph into k-regular spanning subgraphs. When k=1, the graph is decomposed into 1-factors, which are also called perfect matchings. So 1-factorisation is a decomposition of a graph into the largest possible number of isomorphic factors, while 2-factorisation is a decomposition of a graph into a union of cycles. For illustration and a better understanding, we provide examples of graph decomposition and factorisation. In the thesis, we examine in particular the isomorphic factorisation of complete graphs. We give the proof of the Divisibility Theorem proven by Harary, Robinson and Wormald [8]. The Divisibility Theorem states that a complete graph of order n can be decomposed into t isomorphic factors if and only if t divides the number of edges of the complete graph. The proof of the theorem is constructive and includes a description of the construction of the appropriate factors for different values of parameters n and t. In the chapter on tridivisibility, we illustrate the use of this theorem by defining all nine tridivisions of the complete graph K6 and describing how we would find all 41 tridivisions of the complete graph K7. Further below we show some theorems about isomorphic decomposition of complete graphs into the greatest possible number of factors (1-factorisation), two isomorphic factors (self-complementary graphs), paths and cycles (2-factorisation). In the case of cycle decomposition, a complete graph can be decomposed into Hamiltonian cycles, cycles of arbitrary length and the shortest 3-cycles. The problem of decomposing complete graphs into 3-cycles is connected to the Steiner triple systems, so to the question of how many triplets we can make with given elements so that any pair of elements is contained in exactly one of the triplets. The decomposition of a graph into cycles of arbitrary length is at the centre of Alspach's conjecture, which was recently confirmed by D. Bryant et al. [5]. In the research of graph decomposition, there are still many unsolved conjectures. One of them is mentioned in the thesis and it refers to the decomposition of complete graphs into isomorphic subgraphs of given forms, for example, trees. Ringel and Kotzig have found that a complete graph of order 2n+1 can be decomposed into subgraphs of size n if the subgraph has a special characteristic that we today call ``gracefulness''. The conjecture is that all trees are graceful. In the end there are shown some combinatorical puzzles, which we can use at math class.

Keywords:graph decomposition

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back