izpis_h1_title_alt

Classifying homogeneous ultrametric spaces up to coarse equivalence
ID Banakh, Taras (Author), ID Repovš, Dušan (Author)

.pdfPDF - Presentation file, Download (598,34 KB)
MD5: 281F1A18FC5DBE9EF49E373C29BBE263

Abstract
For every metric space ▫$X$▫ we introduce two cardinal characteristics ▫${\rm cov}^\flat(X)$▫ and ▫${\rm cov}^\sharp(X)$▫ describing the capacity of balls in ▫$X$▫. We prove that these cardinal characteristics are invariant under coarse equivalence and prove that two ultrametric spaces ▫$X,Y$▫ are coarsely equivalent if ▫${\rm cov}^\flat(X)={\rm cov}^\sharp(X)={\rm cov}^\flat(Y)={\rm cov}^\sharp(Y)$▫. This result implies that an ultrametric space ▫$X$▫ is coarsely equivalent to an isometrically homogeneous ultrametric space if and only if ▫${\rm cov}^\flat(X)={\rm cov}^\sharp(X)$▫. Moreover, two isometrically homogeneous ultrametric spaces ▫$X,Y$▫ are coarsely equivalent if and only if ▫${\rm cov}^\sharp(X)={\rm cov}^\sharp(Y)$▫ if and only if each of these spaces coarsely embeds into the other space. This means that the coarse structure of an isometrically homogeneous ultrametric space ▫$X$▫ is completely determined by the value of the cardinal ▫${\rm cov}^\sharp(X)={\rm cov}^\flat(X)$▫.

Language:English
Keywords:ultrametric space, isometrically homogeneous metric space, coarse equivalence
Work type:Article
Typology:1.01 - Original Scientific Article
Organization:PEF - Faculty of Education
FMF - Faculty of Mathematics and Physics
Year:2016
Number of pages:Str. 189-202
Numbering:Vol. 144, no. 2
PID:20.500.12556/RUL-111081 This link opens in a new window
UDC:515.124
ISSN on article:0010-1354
DOI:10.4064/cm6697-9-2015 This link opens in a new window
COBISS.SI-ID:17652057 This link opens in a new window
Publication date in RUL:23.09.2019
Views:1348
Downloads:481
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Record is a part of a journal

Title:Colloquium mathematicum
Shortened title:Colloq. math.
Publisher:Éditions Scientifiques de Pologne
ISSN:0010-1354
COBISS.SI-ID:25242624 This link opens in a new window

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back