Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Classifying homogeneous ultrametric spaces up to coarse equivalence
ID
Banakh, Taras
(
Author
),
ID
Repovš, Dušan
(
Author
)
PDF - Presentation file,
Download
(598,34 KB)
MD5: 281F1A18FC5DBE9EF49E373C29BBE263
Image galllery
Abstract
For every metric space ▫$X$▫ we introduce two cardinal characteristics ▫${\rm cov}^\flat(X)$▫ and ▫${\rm cov}^\sharp(X)$▫ describing the capacity of balls in ▫$X$▫. We prove that these cardinal characteristics are invariant under coarse equivalence and prove that two ultrametric spaces ▫$X,Y$▫ are coarsely equivalent if ▫${\rm cov}^\flat(X)={\rm cov}^\sharp(X)={\rm cov}^\flat(Y)={\rm cov}^\sharp(Y)$▫. This result implies that an ultrametric space ▫$X$▫ is coarsely equivalent to an isometrically homogeneous ultrametric space if and only if ▫${\rm cov}^\flat(X)={\rm cov}^\sharp(X)$▫. Moreover, two isometrically homogeneous ultrametric spaces ▫$X,Y$▫ are coarsely equivalent if and only if ▫${\rm cov}^\sharp(X)={\rm cov}^\sharp(Y)$▫ if and only if each of these spaces coarsely embeds into the other space. This means that the coarse structure of an isometrically homogeneous ultrametric space ▫$X$▫ is completely determined by the value of the cardinal ▫${\rm cov}^\sharp(X)={\rm cov}^\flat(X)$▫.
Language:
English
Keywords:
ultrametric space
,
isometrically homogeneous metric space
,
coarse equivalence
Work type:
Article
Typology:
1.01 - Original Scientific Article
Organization:
PEF - Faculty of Education
FMF - Faculty of Mathematics and Physics
Year:
2016
Number of pages:
Str. 189-202
Numbering:
Vol. 144, no. 2
PID:
20.500.12556/RUL-111081
UDC:
515.124
ISSN on article:
0010-1354
DOI:
10.4064/cm6697-9-2015
COBISS.SI-ID:
17652057
Publication date in RUL:
23.09.2019
Views:
1348
Downloads:
481
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Copy citation
Share:
Record is a part of a journal
Title:
Colloquium mathematicum
Shortened title:
Colloq. math.
Publisher:
Éditions Scientifiques de Pologne
ISSN:
0010-1354
COBISS.SI-ID:
25242624
Similar documents
Similar works from RUL:
Similar works from other Slovenian collections:
Back