izpis_h1_title_alt

Zlivanje bioloških podatkov z uporabo večmodalnih nevronskih mrež in razcepa matrik
ID Podgoršek, Lovro (Author), ID Curk, Tomaž (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (1,34 MB)
MD5: 183DEF9D9AA1EF22DB99334E9785AD3E

Abstract
Vsako leto se na področju bioinformatike izvede na stotine novih raziskav. Rezultati le teh so razdrobljeni po različnih podatkovnih bazah, ki so med seboj nepovezane, ali pa sploh niso dostopne preko spleta. Vse več znanstvenikov zanima, če bi lahko te podatke združili in izluščili odvisne medsebojne povezave med podatki. V magistrskem delu predlagamo algoritem in podatkovno strukturo za združevanje podatkov ter se osredotočimo na iskanje skritih povezav z večmodalno konvolucijsko nevronsko mrežo tipa samokodirnik. Predlagano rešitev ovrednotimo z algoritmom matričnega razcepa DFMF. V nalogi pokažemo, da stiskanje in razširjanje različnih podatkov v skupen nižje dimenzionalni prostor odkrije odvisne medsebojne povezave med podatki.

Language:Slovenian
Keywords:Bioinformatika, podatkovno zlianje, nevronske mreže, matrični razcep
Work type:Master's thesis/paper
Organization:FRI - Faculty of Computer and Information Science
Year:2019
PID:20.500.12556/RUL-110542 This link opens in a new window
COBISS.SI-ID:1538364867 This link opens in a new window
Publication date in RUL:16.09.2019
Views:1392
Downloads:283
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Data fusion of biological data using multimodal neural networks and matrix factorization
Abstract:
Biological research is conducted yearly in the field of bioinformatics. However, their outcomes and insights remain scattered across different unconnected databases, that are often not accessible online. There is an increased interest in the science community to connect these datasets and uncover potential relationships. The thesis presents an algorithm and data structure for connecting multiple datasets, and thereby focuses on uncovering data relationships with the method of multimodal convolution autoencoder. The solution is evaluated by the DFMF matrix factorization alghorithm. The results show that encoding and decoding data to a common lower dimensional space reveals dependent data relationships.

Keywords:Bioinformatic, data fusion, neural network, matrix factorization

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back