izpis_h1_title_alt

Kolobarji z enolično faktorizacijo : delo diplomskega seminarja
ID Šteblaj, Matija (Author), ID Brešar, Matej (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (444,64 KB)
MD5: 319A64EDE1E7500618732B7C8F37BAFC

Abstract
Kolobarji z enolično faktorizacijo so celi kolobarji, v katerih lahko neničelne neobrnljive elemente zapišemo kot končni produkt nerazcepnih elementov in je ta zapis enoličen do asociiranosti in vrstnega reda natančno. Veljajo naslednje vsebovanosti: polja $\subset$ evklidski kolobarji $\subset$ glavni kolobarji $\subset$ kolobarji z enolično faktorizacijo $\subset$ celi kolobarji, kjer so vse vsebovanosti stroge. Polja, evklidski kolobarji in glavni kolobarji so torej primeri kolobarjev z enolično faktorizacijo. Kolobar polinomov $K[x]$ je kolobar z enolično faktorizacijo natanko tedaj, ko je $K$ kolobar z enolično faktorizacijo.

Language:Slovenian
Keywords:kolobarji, faktorizacija, polja, evklidski kolobarji, glavni kolobarji, kolobarji z enolično faktorizacijo, kolobarji polinomov
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2019
PID:20.500.12556/RUL-110381 This link opens in a new window
UDC:512
COBISS.SI-ID:18725209 This link opens in a new window
Publication date in RUL:14.09.2019
Views:1654
Downloads:230
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Unique Factorization Domains
Abstract:
Unique Factorization Domains are integral domains in which nonzero elements that are not units can be written as a finite product of irreducible elements and this decomposition is unique up to associates and the order of factors. We have the following inclusions: fields $\subset$ Euclidean Domains $\subset$ Principal Ideal Domains $\subset$ Unique Factorization Domains $\subset$ integral domains with all containments being proper. Thus: fields, Euclidean Domains and Principal Ideal Domains are examples of Unique Factorization Domains. The polynomial ring $K[x]$ is a Unique Factorization Domain if and only if $K$ is a Unique Factorization Domain.

Keywords:rings, factorization, fields, Euclidean Domains, Principal Ideal Domains, Unique Factorization Domains, polynomial rings

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back