izpis_h1_title_alt

Napovedovanje nakupovalne košarice za prihodnji teden
ID Jug, Julijan (Author), ID Sadikov, Aleksander (Mentor) More about this mentor... This link opens in a new window, ID Možina, Martin (Comentor)

.pdfPDF - Presentation file, Download (8,03 MB)
MD5: C465D2C8F0C3C0A6E4F6998DB2872699

Abstract
Ustvarjena sta bila dva priporočilna sistema za napovedovanje nakupovalnih košaric kupcev. Prvi temelji na podatkih iz Kagglovega tekmovanja "Instacart recommender", drugi pa na podatkih iz Mercatorjeve baze. Za napovedovanje nakupov je bil uporabljen gradient boosting algoritem z uporabo odločitvenih dreves. Izdelanih je bilo več različic napovednih modelov z različnimi vhodnimi podatki in parametri. Model vsakemu kupcu priporoči izdelke, za katere meni, da jih želi kupiti. Preizkušena je bila tudi različica, ki priporoči samo 5 oz. 10 izdelkov. Za analizo in primerjavo napovedne točnosti so bile uporabljene mere priklica, točnosti in F-ocene. Na Mercatorjevi domeni nam je uspelo doseči F-oceno 0,164. To predstavlja 6-odstotno izboljšanje F-ocene glede na osnovne referenčne modele. Na Instacart domeni smo dosegli lokalno F-oceno 0,301 in oceno 0,379 na testnih primerih iz tekmovanja. Ta rezulat je primerljiv z ostalimi tekmovalci in nas na Kagglu uvršča na 980. mesto med 2572 tekmovalci.

Language:Slovenian
Keywords:priporočilni sistem, nakupovalna košarica, napoved nakupov, gradient boosting, F-ocena
Work type:Bachelor thesis/paper
Organization:FRI - Faculty of Computer and Information Science
Year:2019
PID:20.500.12556/RUL-110330 This link opens in a new window
COBISS.SI-ID:1538357699 This link opens in a new window
Publication date in RUL:13.09.2019
Views:2665
Downloads:454
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Predicting shopping cart for next week
Abstract:
We created two recommendation systems, which recommend shopping baskets for the following week. The recommendation systems were implemented on two domains. First one is based on Instacart data set, provided in Kaggle competition. Second system is based on data set from Mercator grocery stores. We used gradient boosting tree models for prediction of product orders. We build multiple models using different input data and parameters. The models predict, which products will be bought by a customer. For evaluation of model performance we used F-score, recall and precision measures. On Mercator data set we managed to reach F-score of 0,164. This represents a 6 percent increase in comparison to baseline reference models. On Instacart data set we reached F-score of 0,301 on local test cases and 0,379 on public test cases. This result is comparable to other Kaggle competitors and ranks us on 980. place among 2572 total competitors.

Keywords:recommendation system, shopping cart, order prediction, gradient boosting, F-score

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back