izpis_h1_title_alt

Riemannova funkcija ζ in razporeditev praštevil : delo diplomskega seminarja
ID Brilej, Katarina (Author), ID Magajna, Bojan (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (362,13 KB)
MD5: 3E4F15E91B877624C9D2C1815915B046

Abstract
Riemannovo funkcijo zeta definiramo kot funkcijo kompleksne spremenljivke $s$, in sicer z vrsto $\zeta(s) = \sum_{n = 1}^{\infty} \frac{1}{n^s}$ za $\operatorname{Re}s > 1 $, nato pa jo analitično razširimo na ${\mathbb C} \setminus \{1\}$. Pri tem si pomagamo s funkcijsko enačbo, v kateri je pomembna vloga funkcije gama. Tako razširjena funkcija zeta ima v točki 1 pol stopnje 1, v točkah $-2, -4, -6, \; \dots$ pa tako imenovane trivialne ničle. V nadaljavanju Riemannovo funkcijo zeta izrazimo kot neskončen produkt, imenovan Eulerjev produkt, in pokažemo, da $\zeta$ nima ničel na polravnini $\operatorname{Re}s \geq 1$. To dejstvo uporabimo v dokazu praštevilskega izreka, ki govori o asimptotični ekvivalenci funkcij $\pi (x)$ in $x / \ln(x)$, kjer s $\pi (x) $ označimo število praštevil, ki so manjša ali enaka danemu pozitivnemu realnemu številu $x$.

Language:Slovenian
Keywords:Riemannova funkcija zeta, Poissonova sumacijska formula, izrek o praštevilih, neskončne vrste, neskončni produkti, Eulerjev produkt
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2019
PID:20.500.12556/RUL-110107 This link opens in a new window
UDC:511
COBISS.SI-ID:18739801 This link opens in a new window
Publication date in RUL:12.09.2019
Views:1940
Downloads:257
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:The Riemann ζ Function and the Distribution of Prime Numbers
Abstract:
We define the Riemann zeta function as a function of a complex variable $s$ with the series $\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$ for $\operatorname{Re}s > 1 $ and then extend it analytically to ${\mathbb C} \setminus \{1\}$. We use a functional equation in which the gamma function plays an important role. The extended zeta function has a simple pole in 1 and so-called trivial zeros in $-2, -4, -6, \; \dots$. Later on, we express the Riemann zeta function as an infinite product called the Euler product and show that $\zeta$ has no zeros on the half-plane $\operatorname{Re} s \geq 1$. We use this fact in the proof of the prime number theorem which describes the asymptotic equivalence of the functions $\pi (x)$ and $x / \ln (x) $, where $\pi (x)$ denotes the number of primes less than or equal to a given positive real number $x$.

Keywords:Riemann zeta function, Poisson summation formula, prime number theorem, infinite series, infinite product, Euler product

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back