izpis_h1_title_alt

Analiza podatkov z metodo delnih najmanjših kvadratov (PLS metoda) : delo diplomskega seminarja
ID Trojer, Žiga (Author), ID Knez, Marjetka (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (411,64 KB)
MD5: 2102951590579FAF3BE9AC0A651C636E

Abstract
V delu diplomskega seminarja definiramo linearne modele več spremenljivk v splošnem. Nato predstavimo model po metodi najmanjših kvadratov, kjer si ogledamo glavne značnilnosti modela in izpostavimo glavne pomankljivosti za različne tipe podatkov. Nadaljujemo s predstavitvijo sorodnega modela regresije glavnih komponent, kjer predstavimo glavne ideje metode glavnih komponent. Ko smo seznanjeni z delovanjem te metode, podoben princip uporabimo na metodi delnih najmanjših kvadratov. Teorijo modela podkrepimo s primeri delovanja metode v napovedovanju vrednosti spremenljivk. Nato se dotaknemo še problema klasifikacije in nelinearnih modelov, kjer delovanje prikažemo z enostavnima zgledoma.

Language:Slovenian
Keywords:delni najmanjši kvadrati, NIPALS, regresija, klasifikacija, redukcija dimenzij
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2019
PID:20.500.12556/RUL-110091 This link opens in a new window
UDC:519.2
COBISS.SI-ID:18741081 This link opens in a new window
Publication date in RUL:12.09.2019
Views:2632
Downloads:441
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Data Analysis Using the Partial Least Squares Method (PLS method)
Abstract:
In the seminar, we define linear models of several variables in general. Then we introduce the model using the least squares method, where we look at the main features of the model and highlight the main disadvantages for different types of data. We continue to introduce a related model of principal component regression, where we present the main ideas of the principal component method. After we are familiar with how this method works, we apply a similar principle to the method of partial least squares. The theory of the model is supported by examples of how the method works in prediction. Finally we look also at the problem of classification and nonlinear models, where we show the operation on some simple examples.

Keywords:partial least squares, NIPALS, regression, classification, dimensionality reduction

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back