izpis_h1_title_alt

Beta regresija : delo diplomskega seminarja
ID Ražić, Tina (Author), ID Smrekar, Jaka (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (801,30 KB)
MD5: 9BFF8D0470B224DD919BDA2E3F3A0423

Abstract
Beta regresija je regresijski model, kjer je proučevana slučajna spremenljivka zvezna in zavzame vrednosti na intervalu $(0, 1).$ Predpostavimo, da ima slučajna spremenljivka beta porazdelitev, zato je beta regresija primerna za napovedovanje in analiziranje verjetnosti, deležev ali obetov. Transformacija podatkov omogoči uporabo modela tudi za vrednosti na intervalu $[a, b]$, pri čemer je $a < b$. Z beta regresijo se izognemo omejitvam homoskedastičnosti in simetričnosti, ki jih ima linearna regresija. V delu je obravnavan model beta regresije, opisano je pridobivanje cenilk za regresijske koeficiente po metodi največjega verjetja in izpeljana je Fisherjeva informacijska matrika. Predstavljeni so testi za preizkušanje domnev, intervali zaupanja in različne diagnostične metode, s katerimi preverimo ustreznost modela. Teorija beta regresije je aplicirana na primeru iz resničnega življenja in opisan je postopek regresijske analize v programu RStudio.

Language:Slovenian
Keywords:beta regresija, transformirana linearna regresija, diagnostične metode, regresijska analiza
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2019
PID:20.500.12556/RUL-110003 This link opens in a new window
UDC:519.2
COBISS.SI-ID:18740569 This link opens in a new window
Publication date in RUL:11.09.2019
Views:2668
Downloads:267
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Beta regression
Abstract:
Beta regression is a regression model for a variable of interest that is continuous and restricted to the interval $(0,1)$. The dependent variable is beta distributed, therefore it is suitable for predicting and analysing probability, proportions or odd ratios. Data transformation enables the use of the model also for variables with values in interval $[a, b]$, where $a < b$. With beta regression we avoid the restrictions of linear regression like homoscedasticity and symmetry. Here we study the beta regression model, maximum likelihood estimation for regression parameters, and Fisher information matrix. We cover hypothesis testing, confidence intervals and different diagnostic measures in order to check the goodness-of-fit of the estimated model. We apply beta regression to real-life data and give a detailed description of the analysis steps in RStudio.

Keywords:beta regression, transformed linear regression, diagnostic measures, regression analysis

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back