izpis_h1_title_alt

Imputacija visokodimenzionalnih bioloških podatkov
ID Jelovčan, Gašper (Author), ID Curk, Tomaž (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (1,12 MB)
MD5: 088B3720A9A4B870C5EF9A1ACDEA8D7D

Abstract
V diplomskem delu smo predstavili metode za imputacijo visokodimenzionalnih bioloških podatkov pridobljenih z metodami sekvenciranja posameznih celic. Pridobljenim podatkom mnogokrat manjkajo vrednosti, ki jih poskušamo nadomestiti z ocenami vrednosti. Preizkusili smo različne metode za imputacijo. Implementirali smo jih v modulu v programskem jeziku Python. Metode smo preverili na umetnih in pravih podatkih. Na preizkušenih podatkih so vse metode dosegle dobre rezultate. Najbolj ustrezna je bila metoda pCMF.

Language:Slovenian
Keywords:Posamezne celice, števni podatki, redki podatki, imputacija.
Work type:Bachelor thesis/paper
Organization:FRI - Faculty of Computer and Information Science
Year:2019
PID:20.500.12556/RUL-109866 This link opens in a new window
COBISS.SI-ID:1538319811 This link opens in a new window
Publication date in RUL:09.09.2019
Views:1274
Downloads:214
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Imputation of high-dimensional biological data
Abstract:
In this thesis we present methods for solving problems of high-dimensional biological data imputation collected by sequencing individual cells. We try to assign values to the missing data, replacing them with estimations. We tried several imputation methods. We have implemented imputation methods as a module in programming language Python. Then we tested them using synthetic data and real biological data. The evaluation showed that all methods achieve good results. The pCMF method performed the best.

Keywords:Single cell, count data, sparse data, imputation.

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back