izpis_h1_title_alt

Kanonična forma za kompleksne simetrične matrike : delo diplomskega seminarja
ID Kozinc, Anja (Author), ID Šivic, Klemen (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (516,29 KB)
MD5: 77A45283E8CE0A6E6A7167801CC1CE11

Abstract
Realne simetrične matrike so diagonalizabilne, kar pa v splošnem za kompleksne simetrične matrike, ki so obravnavane v diplomski nalogi, ne velja. Kompleksna simetrična matrika je diagonalizabilna natanko tedaj, ko vsak lastni podprostor vsebuje ortonormirano bazo. Če obstaja lastni podprostor, katerega vsaka ortogonalna baza vsebuje kak izotropični vektor, matrike ne moremo diagonalizirati. V diplomski nalogi so izotropični vektorji podrobneje predstavljeni, saj vplivajo na diagonalizabilnost obravnavanih matrik. Poleg tega sta za matrike, ki niso diagonalizabilne, predstavljeni dve možni simetrični kanonični formi, katerima je vsaka kompleksna simetrična matrika ortogonalno podobna.

Language:Slovenian
Keywords:kompleksna simetrična matrika, diagonalizabilnost, izotropični vektor, kanonična forma
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2019
PID:20.500.12556/RUL-109772 This link opens in a new window
UDC:512
COBISS.SI-ID:18719833 This link opens in a new window
Publication date in RUL:08.09.2019
Views:1749
Downloads:159
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Canonical form for complex symmetric matrices
Abstract:
A real symmetric matrix can be diagonalised by an orthogonal transformation. This statement is not true, in general, for a symmetric matrix with complex elements, which is discussed in the present thesis. A complex symmetric matrix can be diagonalised by an orthogonal transformation, if and only if each eigenspace of the matrix has an orthonormal basis. If there is an eigenspace, where every orthogonal basis contains an isotropic vector, the matrix can not be diagonalised. In the present thesis isotropic vectors are presented in greater detail. Also, two possible symmetric canonical forms are obtained for the non-diagonalisable case.

Keywords:complex symmetric matrix, diagonalisability, isotropic vector, canonical form

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back