Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Repository of the University of Ljubljana
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Details
Reševanje problema usmerjanja vozil z genetskim algoritmom : magistrsko delo
ID
Setnikar, Neža
(
Author
),
ID
Knez, Marjetka
(
Mentor
)
More about this mentor...
PDF - Presentation file,
Download
(2,31 MB)
MD5: 1F750A902AD535AFC1F29F54D54F852E
Image galllery
Abstract
Zaradi večanja logističnih dejavnosti po vsem svetu je problem usmerjanja vozil eden izmed bolj znanih kombinatoričnih problemov. Splošni problem usmerjanja vozil se ukvarja z dostavo blaga strankam, za katere imamo dano njihovo povpraševanje. Rešitev predstavlja optimalna pot s čim manjšimi stroški, pri čemer moramo vse stranke obiskati natanko enkrat. Na voljo imamo več vozil, ki se začnejo in končajo v skladišču. Z večanjem velikosti problema se eksponentno povečuje kompleksnost reševanja. Zaradi tega spada problem usmerjanja vozil med NP-težke probleme, ki jih je mogoče rešiti z metahevrističnimi metodami, med katere uvrščamo tudi genetski algoritem. Magistrsko delo ima dva glavna cilja. Prvi je temeljita predstavitev problema usmerjanja vozil in genetskega algoritma. Genetski algoritem je ena izmed pomembnih tehnik za iskanje globalnega ekstrema, ki se pogosto uporablja za probleme kombinatoričnega tipa in temelji na posnemanju procesov, ki jih opazimo med naravno evolucijo. Selekcija, križanje in mutacija so glavni genetski operatorji. Drugi cilj magistrskega dela je razvoj aplikacije, ki uporabnikom omogoča rešiti problem usmerjanja vozil s pomočjo genetskega algoritma. Poleg teh dveh ciljev se v delu osredotočimo tudi na nekaj praktičnih primerov.
Language:
Slovenian
Keywords:
problem usmerjanja vozil
,
genetski algoritem
,
križanje
,
mutacija
Work type:
Master's thesis/paper
Typology:
2.09 - Master's Thesis
Organization:
FMF - Faculty of Mathematics and Physics
Year:
2019
PID:
20.500.12556/RUL-109707
COBISS.SI-ID:
18715225
Publication date in RUL:
07.09.2019
Views:
2472
Downloads:
256
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
SETNIKAR, Neža, 2019,
Reševanje problema usmerjanja vozil z genetskim algoritmom : magistrsko delo
[online]. Master’s thesis. [Accessed 14 March 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=109707
Copy citation
Share:
Secondary language
Language:
English
Title:
Solving vehicle routing problem using genetic algorithm
Abstract:
The vehicle routing problem is one of the most known combinatorial problems due to an increase in logistics worldwide activities. The general problem is described as the delivery of goods to customers for whom their demand is given. The solution represents the optimal route with minimal transportation cost, where each customer is visited only once, by only one vehicle. Each vehicle starts and ends at the depot. The complexity of the problem increases exponentially with the size. Because of this property, the vehicle routing problem belongs to the class of NP-hard combinatorial problems that can be solved with metaheuristic methods, among which is also a genetic algorithm. This thesis has two main goals. The first is a thorough presentation of vehicle routing problem and genetic algorithm. Genetic algorithm is one of the most important global search methods commonly used for solving combinatorial problems and is based on mimicking the processes observed during natural evolution. Selection, crossover and mutation are three main genetic operators. The second goal of the master's thesis is to develop an application that allows users to solve the vehicle routing problem using a genetic algorithm. In addition to these two goals, the thesis also focuses on some practical examples.
Keywords:
vehicle routing problem
,
genetic algorithm
,
crossover
,
mutation
Similar documents
Similar works from RUL:
ΛCDM not dead yet
Early results from GLASS-JWST
Early Results from GLASS-JWST
Early Results from GLASS-JWST
A first look at spatially resolved Balmer decrements at 1.0 < z < 2.4 from JWST NIRISS slitless spectroscopy
Similar works from other Slovenian collections:
No similar works found
Back