izpis_h1_title_alt

Posplošena diskriminantna analiza z uporabo posplošenega singularnega razcepa : delo diplomskega seminarja
ID Banevec, Jernej (Author), ID Knez, Marjetka (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (514,62 KB)
MD5: 2E2FCA0B4CDB1501DBFF352EF6F439B4

Abstract
Linearna diskriminantna analiza je metoda, ki se uporablja v statistiki, pri strojnem učenju in pri metodah prepoznavanja vzorcev. Njen cilj je poiskati takšno kombinacijo merjenih spremenljivk, ki kar najbolje ločuje med vnaprej določenimi razredi. Definirana je kot optimizacijski problem, ki vključuje kovariančne matrike, ki zadoščajo pogoju nesingularnosti. Ker ta pogoj otežuje aplikativnost metode, predstavimo posplošitev linearne diskriminantne analize, ki je uporabna tudi v primeru, ko navadna linearna diskriminantna analiza odpove. Uporabo posplošene diskriminantne analize preizkusimo na primeru iz področja medicine, kjer v razrede razvrščamo merjene podatke.

Language:Slovenian
Keywords:Linearna diskriminantna analiza, posplošeni singularni razcep, optimizacija sledi
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2019
PID:20.500.12556/RUL-109533 This link opens in a new window
UDC:512
COBISS.SI-ID:18717529 This link opens in a new window
Publication date in RUL:05.09.2019
Views:3479
Downloads:197
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Generalized discriminant analysis using the generalized singular value decomposition
Abstract:
Linear discriminant analysis is a method used in statistics, machine learning and pattern recognition. Its aim is to find a combination of features that separates between pre-structured clusters. It is defined as an optimization problem involving covariance matrices, that have to be nonsingular. Since this condition makes it difficult to apply the method on every data, we aim to generalize linear discriminant analysis and make it useful also in cases, when classic linear discriminant analysis fails. Usage of generalized discriminant analysis is shown on medical case of cluster prediction.

Keywords:Linear discriminant analysis, generalized singular value decomposition, trace optimization

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back