izpis_h1_title_alt

Topološke grupe : delo diplomskega seminarja
ID Benčina, Benjamin (Author), ID Kandić, Marko (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (615,46 KB)
MD5: 419E73D416357ED3DF4FEFCF5C4C0496

Abstract
Namen tega diplomskega dela je predstaviti pojem topološke grupe in dokazati nekaj temeljnih izrekov iz študija topoloških grup. Definirana je topološka grupa in opisane so njene osnovne lastnosti. Obravnavane so topološke podgrupe in kvocientni topološki prostori topoloških grup. Pokazano je, da za topološke grupe veljajo podobni trije izreki o topoloških izomorfizmih kot za grupe. Na topološko grupo sta vpeljani leva in desna uniformna struktura, glede na kateri je vsaka topološka grupa uniformni prostor. Na topološki grupi je nato skonstruirana levoinvariantna psevdometrika. Karakterizirana je metrizabilnost za Hausdorffove topološke grupe in dokazano je, da sta za topološke grupe povsem regularnost in separacijski aksiom $T_0$ ekvivalentna. Skonstruiran je primer povsem regularne topološke grupe, ki ni normalna. Za regularne topološke prostore so navedene karakterizacije parakompaktnosti. Dokazano je, da je vsaka lokalno kompaktna Hausdorffova topološka grupa parakompaktna in posledično normalna.

Language:Slovenian
Keywords:topološka grupa, separacijski aksiomi, metrizabilnost, povsem regularnost, parakompaktnost
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2019
PID:20.500.12556/RUL-109479 This link opens in a new window
UDC:515.1
COBISS.SI-ID:18719577 This link opens in a new window
Publication date in RUL:04.09.2019
Views:1486
Downloads:247
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Topological groups
Abstract:
The goal of this thesis is to present the concept of a topological group and to prove some fundamental theorems from the study of topological groups. We define a topological group and describe its basic properties. We look at topological subgroups and quotient topological spaces of topological groups. We show that for topological groups three topological isomorphism theorems hold which are similar to those for groups. We introduce left and right uniform structures on a topological group and then show that every topological space is also a uniform space. We then construct a left invariant pseudo-metric on a topological group. We characterize metrizability for Hausdorff topological groups and we prove that complete regularity and the $T_0$ separation axiom are equivalent for topological groups. We construct an example of a completely regular topological group which is not a normal topological space. For regular topological spaces we list different characterizations of paracompactness. We then prove that every locally compact Hausdorff topological group is paracompact, and hence a normal topological space.

Keywords:topological group, separation axioms, metrizability, complete regularity, paracompactness

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back