izpis_h1_title_alt

Slučajni sprehodi na množici celih števil : delo diplomskega seminarja
ID Mur, Andraž (Author), ID Drnovšek, Roman (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (671,75 KB)
MD5: AC6900FDE0FC53850E47F75D20A195CD

Abstract
Slučajni sprehodi na množici celih števil so slučajni procesi, pri katerih se na vsakem koraku z neko verjetnostjo premaknemo iz neke celoštevilske vrednosti na eno izmed njenih sosed, torej se vrednost bodisi poveča za 1 bodisi za 1 zmanjša. Poleg tega so koraki slučajnega sprehoda neodvisni, iz česar sledi, da gre za markovski proces, saj je za vsako stanje pomembno le, kje smo se nahajali v prejšnjem času in ne kako smo do tja prišli. S slučajnimi sprehodi na celih številih se lahko modelirajo razni praktični primeri, zanimiva pa je tudi obravnava lastnosti le-teh. Tako si lahko pri njih ogledujemo verjetnost, da smo po nekem določenem številu korakov dosegli neko vrednost ali verjetnost, da je bila neka izbrana vrednost kadarkoli dosežena, išče pa se lahko tudi maksimalne in minimalne vrednosti, dosežene tekom sprehoda. V praktičnem smislu pa so uporabni predvsem neskončni slučajni sprehodi na množici celih števil, torej sprehodi z neskončno mnogo možnimi koraki. Pri teh je najbolj zanimiva obravnava limitnih lastnosti sprehoda, kot je vrednost, proti kateri se slučajni sprehod usmeri ter verjetnost zadnjega obiska nekega izbranega celega števila.

Language:Slovenian
Keywords:hazarder/kockar, indukcija, rodovna funkcija, slučajna spremenljivka, slučajni proces
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2019
PID:20.500.12556/RUL-109477 This link opens in a new window
UDC:519.2
COBISS.SI-ID:18717273 This link opens in a new window
Publication date in RUL:04.09.2019
Views:1508
Downloads:190
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Random walks on the set of all integers
Abstract:
A random walk on the set of all integers is a random process in which we move from a whole number to one of its neighboring values on every step; that means that on every step the value of our walk either increases or decreases by 1. These steps are independent of each other, which makes random walks a Markov process because it is not important how we got to the number at which the walk stands, only the value itself. This kind of walks is very useful for modeling many practical problems. However, the most interesting things about them are their properties since we can, for example, observe the probability of the walk reaching a particular number after a fixed amount of steps taken or the probability of some value ever being reached by the walk at all. We can also search for the maximal or minimal value which the walk reaches. Random walks on whole numbers with an unlimited number of steps or infinite walks for short are, however, the most useful in a practical sense. These types of walks are particularly interesting in their limits or in their probabilities of reaching a fixed number for one last time..

Keywords:gambler, induction, generating function, random variable, random process

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back