izpis_h1_title_alt

Transport v integrabilni klasični spinski prostorsko-časovni mreži
ID Krajnik, Žiga (Author), ID Prosen, Tomaž (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (5,80 MB)
MD5: 154DA609D5EC107BB3E5B925BA9525B2

Abstract
V delu študiramo transport v Landu-Lifshitzovem modelu na mreži v eni prostorski dimenziji, ki predstavlja klasičen analog kvantne spinske verige. Model motiviramo s kvantnomehansko obravnavo izmenjalne interakcije. Vpeljemo koncept integrabilnosti v klasični mehaniki ter zapišemo enačbe gibanja modela z uporabo Laxovih operatorjev in pogoja ničelne ukrivljenosti. Integrabilnost modela sledi iz involutivne lastnosti para matrik monodromij, ki jo dokažemo z uporabo R-matrike. Predstavimo Trotterjev razcep Liouvillove enačbe, ki nam omogoči učinkovito simulacijo dinamike modela. Naiven razcep modela se izkaže za neintegrabilnega, kar potrdimo z izračunom Lyapunovega spektra. Uvedemo novo integrabilno posplošitev Landau-Lifshitzovega modela na diskretno krajevno-časovno mrežo ter poiščemo dvodelčni hamiltonian, ki generira želeno dinamiko ter novo R-matriko modela. Pokažemo, da je takšen model sam svoj dual. V nemagnetiziranem stanju se model izkaže za superdifuzivnega, z analizo korelacijskih funkcij pokažemo, da spada v Kardar-Parisi-Zhangov univerzalnostni razred. V magnetiziranem stanju prevlada balistično obnašanje, opazimo bogato odvisnost korelacijske funkcije magnetizacije od celotne magnetizacije.

Language:Slovenian
Keywords:Landau-Lifshitzov model na mreži, transport, integrabilnost, samodualnost, Laxov operator, R-matrika, Trotterjev razcep, Liouvillova enačba, integrabilna trotterizacija, Lyapunov spekter, superdifuzivnost, Kardar-Parisi-Zhangov univerzalnostni razred
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2019
PID:20.500.12556/RUL-109343 This link opens in a new window
COBISS.SI-ID:3351396 This link opens in a new window
Publication date in RUL:30.08.2019
Views:2543
Downloads:426
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Transport in an integrable classical spin space-time lattice
Abstract:
In the present work we study the transport properties of the lattice Landau-Lifshitz model in one spatial dimensions, which represents a classical analogue of a quantum spin chain. The model is motivated by a quantum mechanical treatment of the exchange interaction. We introduce the concept of integrability in classical mechanics and write down the model’s equations of motion using Lax operators and the zero-curvature condition. The integrability of the models follows from an involutive property of a pair of monodromy matrices which we prove using an R-matrix. We present the Trotter decomposition of the Liouville equation, which allows for an efficient simulation of the model dynamics. The naive decomposition of the model turns out to be nonintegrable, which we verify by computing the Lyapunov spec- trum. We introduce a novel integrable generalization of the Landau-Lifshitz model on the discrete time lattice and compute the two-body Hamiltonian that generates the requisite dynamics and find a novel R-matrix. We show that the model is self-dual. The model turns out to be superdiffusive in a non-magnetized state, by analyzing its correlation functions we further show it belongs into the Kardar-Parisi-Zhang universality class. In a magnetized state ballistic trasnport predominates, a rich dependance of the correlation function of magnetization upon net magnetization is observed.

Keywords:lattice Landau-Lifshitz model, transport, integrability, self-duality, Lax operator, R-matrix, Trotter decomposition, Liouville equation, integrable trotterization, Lyapunov spectrum, superdiffusivity, Kardar-Parisi-Zhang universality class

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back