izpis_h1_title_alt

Hinčinova neenakost : delo diplomskega seminarja
ID Brešar, Miha (Author), ID Dragičević, Oliver (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (380,38 KB)
MD5: 35686C83E85375A32C787FDE1B463400

Abstract
Hinčinova neenakost spada med klasične neenakosti. Čeprav velja za verjetnostno neenakost, se pogosto uporablja tudi v analizi. V diplomskem delu ob dokazu neenakosti predstavimo nekatere lastnosti Schwartzovega prostora in Fourierovih transformacij, s katerimi v zaključku dokažemo Littlewood-Paleyev izrek, ki velja za enega temelnjih izrekov v harmonični analizi.

Language:Slovenian
Keywords:Hinčinova neenakost, Fourierova transformacija, Schwartzov prostor, Littlewood-Paleyev izrek
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2019
PID:20.500.12556/RUL-109339 This link opens in a new window
UDC:517
COBISS.SI-ID:18710617 This link opens in a new window
Publication date in RUL:30.08.2019
Views:1486
Downloads:198
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Khintchine's inequality
Abstract:
Khintchine inequality is one of the classical inequalities. Even though it is considered a probabilistic inequality, we find most of its applications in analysis. In this diploma thesis, along with the proof of the inequality we present some properties of Schwartz spaces and the Fourier transform, that we use to prove the Littlewood-Paley theorem, which is one of fundamental theorems of harmonic analysis.

Keywords:Khintchine inequality, Fourier transform, Schwartz space, Littlewood- Paley theorem

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back