izpis_h1_title_alt

Grupa obrnljivih elementov kolobarja Z_n
ID Miklavec, Tilen (Author), ID Šparl, Primož (Mentor) More about this mentor... This link opens in a new window

URLURL - Presentation file, Visit http://pefprints.pef.uni-lj.si/5886/ This link opens in a new window

Abstract
V magistrskem delu proučujemo kolobarje in njihove grupe obrnljivih elementov. Obrnljivi elementi poljubnega kolobarja z enico namreč tvorijo grupo za pripadajočo multiplikativno operacijo. V posebnem primeru kolobarja Z_n gre za grupo obrnljivih elementov U_n, ki ji rečemo tudi grupa enot. Glavni namen magistrskega dela je predstaviti kolobar Z_n in ugotoviti, kateri znani grupi je izomorfna grupa obrnljivih elementov U_n. Zanima nas tudi, kdaj je ta grupa ciklična. V ta namen natančno opišemo strukturo grupe obrnljivih elementov U_n in jo zapišemo kot direktni produkt samih cikličnih grup. V magistrskem delu pokažemo tudi, kako si lahko z rezultati o strukturi grupe U_n pomagamo pri reševanju nekaterih kongruenčnih enačb.

Language:Slovenian
Keywords:kolobar Z_n
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:PEF - Faculty of Education
Year:2019
PID:20.500.12556/RUL-109157 This link opens in a new window
COBISS.SI-ID:12561225 This link opens in a new window
Publication date in RUL:26.08.2019
Views:1269
Downloads:215
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:The group of units of the ring Z_n
Abstract:
In the master’s thesis we study finite rings and their groups of units. The invertible elements of an arbitrary ring with a multiplicative identity form a group for the corresponding multiplicative operation. In the special case of the ring Z_n, this is a group denoted by U_n, also called the group of units. The main purpose of the thesis is to introduce the ring Z_n and to determine, for each integer n, the well known group that the group of units U_n is isomorphic to. We also determine the necessary and suficient condition on n for the group U_n to be cyclic. To this end, we investigate the structure of the group of units U_n and show that we can write it as a direct product of certain cyclic groups. We also indicate how our results can be used for solving some congruence equations.

Keywords:ring Z_n

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back